Cryptography Reference
In-Depth Information
= 173) such that t S v i,t
n
0 (mod 2) for each i =0 , 1 , 2 ,..., 11 is
S
=
{
0 , 18 ,
23
. Thus,
}
x t =2 2 3 2 5 4 173 2 191 2
9062 2
x 2 (mod 30167) ,
t
S
and
y t =2 2 7 2 11 2 17 2 41 2
16837 2
y 2 (mod 30167) ,
t S
so y 2
x 2
16837 2
9062 2
25899 (mod 30167).
By computing both of the values, gcd(7775 , 30167) = 311 = gcd( y
7775
·
x,n )
·
and gcd(25899 , 30167) = 97 = gcd( x + y,n ), we get that n = 30167 = 97
311.
t
x t
y t
v t
0
173
2
·
7
·
17
(1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0)
·
1
172
11
53
(1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0)
5
168
29
·
67
(1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1)
5
178
37
·
41
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0)
·
·
6
167
2
17
67
(1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1)
7
180
7
·
11
·
29
(0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0)
11
184
7
·
17
·
31
(0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0)
7 4
14
187
2
·
(0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0)
15
158
11
·
43
(1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0)
7 3
17
156
·
17
(1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0)
18
191
2
·
7
·
11
·
41
(0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0)
23
150
11
·
17
·
41
(1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0)
28
201
2
·
7
·
17
·
43
(0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0)
Some elementary linear algebra underlies the solution to a factorization prob-
lem using the QS as depicted in Example C.5. By ensuring that there are k +2
vectors v t in a k + 1-dimensional vector space
k +1
2
F
, we guarantee that there
is a linear dependence relation among the v t .
In other words, we ensure the
existence of the set
in step (3) of the algorithm such that congruence (C.5)
holds. There is no guarantee that x
S
y (mod n ), but there are usually several
dependency relations among the v t , so there is a high probability that at least
one of them will yield an ( x,y ) pair such that x
≡±
y (mod n ). The problem, of
course, is that for “large” smoothness bounds B , we need a lot of congruences
before we may be able to get these dependency relations.
For k as given in Footnote C.2, the asymp totic running t ime (see page 502),
≡±
of the quadratic sieve is O exp (1 + o (1)) ln( n ) ln(ln( n )) .
To split n
N
, with the QS, we consider a polynomial,
n
) 2
g ( x )=( x +
n,
Search WWH ::




Custom Search