Biomedical Engineering Reference
In-Depth Information
Solution
First note that
2p
T ¼ p
T ¼
2
and o 0 ¼
To simplify the analysis, integration for
a m and
b m is carried out over the first period of the
waveform (from -1 to 1)
ð 1
ð 1=2
1
T
1
2
5
2
a 0 ¼
1 x ð t Þ dt ¼
5
dt ¼
1
=
2
ð 1
ð 1=2
2
T
a m ¼
1 x ð t Þ
cos
ð m
o o t Þ dt ¼
5
cos
ð m
p
t Þ dt
1
=
2
1
=
2
5 sin
ð m
p
t Þ
5 sin
ð m
p
=
2
Þ
¼
2 ¼
¼
5
sinc
ð
p
=
2
Þ
m
m p
m p=
2
1
=
ð 1
ð 1=2
1
=
2
2
T
cos
ð m p t Þ
m
b m ¼
1 x ð t Þ
sin
ð m o o t Þ dt ¼
5
sin
ð m p t Þ dt ¼
5
2 ¼
0
p
1
=
2
1
=
where by definition sinc
ð x Þ¼
sin
ð x Þ= x
. Substituting the values for
a 0 ,
a m , and
b m into Eq. (11.3a)
gives
1
m ¼
5
2 þ
sin
ð m p=
2
Þ
x ð t Þ¼
5
cos
ð m p t Þ
m
p
=
2
1
MATLAB implementation:
%Plotting Fourier Series Approximation
subplot(211)
time
¼
-2:0.01:2; %Time Axis
¼
x
5/2; %Initializing Signal
for m
¼
1:10
¼
þ
x
x
5*sin(m*pi/2)/m/pi*2*cos(m*pi*time);
end
plot(time,x,'k') %Plotting and Labels
xlabel('Time (sec)')
ylabel('Amplitude')
set(gca,'Xtick',[
2:2])
set(gca,'Ytick',[0 5])
set(gca,'Box','off')
%Plotting Fourier Magnitudes
subplot(212)
m
¼
1:10;
Search WWH ::




Custom Search