Biomedical Engineering Reference
In-Depth Information
Since the conservation of mass equation for
q 1 involves only
q 1 ,
it
is easily solved as
e 1:1 t u ð t Þ:
q 1
¼
25
Substituting the solution for
q 1 into Eq. (7.114), gives
e 1:1 t
q 2 ¼
27
:
5
0
:
91
q 2
ð
7
:
118
Þ
Equation (7.118) involves an input and only
q 2 , which is solved independently as
u ð t Þ
Þ
K 12 K 20 þ K 23
K 12 q 1 ð
0
e K 20 þ K 23
ð
Þ t
e K 12 t
e 0:91 t e 1:1 t
q 2 ¼
¼
144
:
74
ð
7
:
119
Þ
ð
Þ
The solution for
q 2 is substituted into Eq. (7.115), yielding
Þ
K 12 K 20 þ K 23
K 12 q 1 ð
0
q 3 ¼ K 23
e K 20 þ K 23
ð
Þ t
e K 12 t
15
:
5
q 3 þ
30
q 4 þ
0
:
4
q 5
ð
Þ
ð
7
:
120
Þ
e 0:91 t e 1:1 t
¼
130
:
27
15
:
5
q 3 þ
30
q 4 þ
0
:
4
q 5
Equations (7.120), (7.116), and (7.117) are solved using MATLAB and the D-Operator, as
follows:
>>
syms D
>>
¼
A
[-15.5 30 0.4;15 -31 0;0.5 0 -0.45];
>>
det(D*eye(3)-A)
>>
¼
adj
det(D*eye(3)-A)*inv(D*eye(3)-A)
which gives the reconstructed differential equations for
q 3 as
e 1:1 t
e 0:91 t
__ q 3 þ
46
:
95 q 3 þ
51
:
225 q 3 þ
7
:
525
q 3 ¼
2531
:
8
1803
:
12
ð
7
:
121
Þ
with roots
45.84,
0.94, and
0.18. The natural response is
q 3 n ¼ B 1 e 45:84 t þ B 2 e 0:94 t þ B 3 e 0:18 t
The forced response is
q 3 f ¼ B 4 e 1:1 t þ B 5 e 0:91 t , which after substituting into Eq. (7.113) gives
B 4 ¼
380
:
39 and
B 5 ¼
1870
:
41
The complete response is then
q 3 ¼ B 1 e 45:84 t þ B 2 e 0:94 t þ B 3 e 0:18 t þ
e 1:1 t þ
e 0:91 t
380
:
39
1870
:
41
We use the initial conditions,
q 3 ð
0
Þ¼
0,
q 3 ð
0
Þ¼
0, and
q 3 ð
0
Þ¼
24
:
75, to solve for
B 1 ,
B 2 , and
B 3
as follows:
q 3 ð
0
Þ¼
0
¼ B 1 þ B 2 þ B 3 þ
380
:
39
þ
1870
:
41
and with
q 3 ¼
45
:
84
B 1 e 45:84 t
0
:
94
B 2 e 0:94 t
0
:
18
B 3 e 0:18 t
418
:
39
e 1:1 t
1701
:
97
e 0:91 t we
have
q 3 ð
0
Þ¼
0
¼
45
:
84
B 1
0
:
94
B 2
0
:
18
B 3
418
:
39
1701
:
97
Continued
Search WWH ::




Custom Search