Biomedical Engineering Reference
In-Depth Information
21. Fit the blood rheological data of Example Problem 4.13 to a Casson model and find the yield
stress t 0 for blood.
22. Solve Eq. (4.71) for pressure
p
(
t
) when the aortic valve is closed. Using the parameter values
in Table 4.4, plot
p
as a function of time for one heartbeat (t
¼
0 - 1 sec).
23. Compute isovolumic ventricular pressure
p v (
t
) for the canine heart with initial volumes
30, 40, 50, 60, 70 ml. Overlay these plots as in Figure 4.41.
24. Write a MATLAB m-file to compute ventricular elastance using Eq. (4.77). Compute and plot
E v (
V v ¼
) for the parameter values in Example Problem 4.15.
25. For the three pressure-volume work loops in Figure 4.52, measure end-diastolic volume EDV,
end-systolic volume ESV, stroke volume SV, and ejection fraction EF. Estimate the total
mechanical power done by the ventricle in units of watts.
t
References
[1] R. Baker, Pelvic angles: a mathematically rigorous definition which is consistent with a conventional clinical
understanding of the terms, Gait Posture 13 (2001) 1-6.
[2] A.H. Burstein, T.M. Wright, Fundamentals of Orthopaedic Biomechanics, Williams & Wilkins, Baltimore, MD,
1994.
[3] A. Cappozzo, Gait analysis methodology, Hum. Mov. Sci. 3 (1984) 27-50.
[4] K.B. Chandran, S.E. Rittgers, A.P. Yoganathan, Biofluid Mechanics: The Human Circulation, CRC Taylor &
Francis Group, Boca Raton, FL, 2007.
[5] R.B.D. Davis III, Musculoskeletal biomechanics: Fundamental measurements and analysis, Chpt. 6 in: J.D.
Bronzino (Ed.), Biomedical Engineering and Instrumentation, PWS Engineering, Boston, MA, 1986.
[6] R.B. Davis, S. ˜ unpuu, D.J. Tyburski, J.R. Gage, A gait analysis data collection and reduction technique, Hum.
Mov. Sci. 10 (1991) 575-587.
[7] R. Dugas, A History of Mechanics, Dover Publications, New York, NY, 1988, reprinted from a 1955 text.
[8] R.M. Ehrig, W.R. Taylor, G.N. Duda, M.O. Heller, A survey of formal methods for determining functional joint
axes, J. Biomech. 40 (2007) 2150-2157.
[9] R.L. Fournier, Basic Transport Phenomena in Biomedical Engineering, Taylor & Francis, Philadelphia, PA,
1999.
[10] Y.C. Fung, A First Course in Continuum Mechanics, second ed., Prentice-Hall, Englewood Cliffs, NJ, 1977.
[11] Y.C. Fung, Biomechanics: Mechanical properties of living tissues, second ed., Springer-Verlag, New York, NY,
1993.
[12] D.T. Greenwood, Principles of Dynamics, second ed., Prentice-Hall, Englewood Cliffs, NJ, 1988.
[13] A.F. Huxley, Muscle structure and theories of contraction, Prog. Biophys. 7 (1957) 255-318.
[14] A. Kennish, E. Yellin, R.W. Frater, Dynamic stiffness profiles in the left ventricle, J. Appl. Physiol. 39 (1975)
665.
[15] W.R. Milnor, Hemodynamics, second ed., Williams and Wilkins, Baltimore, MD, 1989.
[16] V.C. Mow, W.C. Hayes, Basic Orthopaedic Biomechanics, second ed., Lippencott-Rave, Philadelphia, PA,
1997.
[17] J.P. Mulier, Ventricular pressure as a function of volume and flow, Ph.D. dissertation, Univ. of Leuven,
Belgium, 1994.
[18] D.M. Needham, Machina Carnis: The Biochemistry of Muscular Contraction in its Historical Development,
Cambridge University Press, Cambridge, U.K., 1971.
[19] B.M. Nigg, W. Herzog, Biomechanics of the Musculo-Skeletal System, third ed., John-Wiley, New York, NY,
2007.
[20] A. Noordergraaf, Hemodynamics, Chpt. 5 in: H.P. Schwan (Ed.), Biological Engineering, McGraw-Hill, New
York, NY, 1969.
[21] A. Noordergraaf, Circulatory System Dynamics, Academic Press, New York, NY, 1978.
Search WWH ::




Custom Search