Biomedical Engineering Reference
In-Depth Information
141. P. Aymard, D.R. Martin, K. Plucknett, T.J. Foster, A.H. Clark, and I.T. Norton, Infl uence of thermal
history on the structural and mechanical properties of agarose gels. Biopolymers 59 , 131-144 (2001).
142. M. Hara, S. Iazvovskaia, H. Ohkawa, Y. Asada, and J. Miyake, Immobilization of P450 monooxygen-
ase and chloroplast for use in light-driven bioreactors. J. Biosci. Bioeng. 87 , 793-797 (1999).
143. H.H. Liu, Z.Q. Tian, Z.X. Lu, Z.L. Zhang, M. Zhang, and D.W. Pang, Direct electrochemistry and
electrocatalysis of heme-proteins entrapped in agarose hydrogel fi lms. Biosens. Bioelectron. 20 , 294-
304 (2004).
144. E. Topoglidis, T. Lutz, R.L. Willis, C.J. Barnett, A.E.G. Cass, and J.R. Durrant, Protein adsorption on
nanoporous TiO 2 fi lms: a novel approach to studying photoinduced protein/electrode transfer reactions.
Faraday Discuss. 116 , 35-46 (2000).
145. E. Topoglidis, C.J. Campbell, A.E.G. Cass, and J.R. Durrant, Factors that affect protein adsorption
on nanostructured titania fi lms. A novel spectroelectrochemical application to sensing. Langmuir 17 ,
7899-7906 (2001).
146. Q.W. Li, G.A. Luo, and J. Feng, Direct electron transfer for heme proteins assembled on nanocrystal-
line TiO 2 fi lm. Electroanalysis 13 , 359-363 (2001).
147. K.J. McKenzie and F. Marken, Accumulation and reactivity of the redox protein cytochrome c in mes-
oporous fi lms of TiO 2 phytate. Langmuir 19 , 4327-4331 (2003).
148. X. Xu, J.Q. Zhao, D.C. Jiang, J.L. Kong, B.H. Liu, and J.Q. Deng, TiO 2 sol-gel derived amperomet-
ric biosensor for H 2 O 2 on the electropolymerized phenazine methosulfate modifi ed electrode. Anal.
Bioanal. Chem. 374 , 1261-1266 (2002).
149. Y. Zhang, P.L. He, and N.F. Hu, Horseradish peroxidase immobilized in TiO 2 nanoparticle fi lms on
pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim. Acta 49 ,
1981-1988 (2004).
150. P. Nicholls and G.R. Schonbaum, in The Enzymes (P.D. Boyer, H. Lardy, and K. Myrback, eds), p. 158.
Academic Press, Orlando (1963).
151. M.R.N. Murthy, T.J. Reid, A. Sicignano, N. Tanaka, and M.G. Rossmann, Structure of beef liver cata-
lase. J. Mol. Biol. 152 , 465-499 (1981).
152. D. Voer and J.G. Voet, in Biochemistry , 2nd ed. Wiley, New York (1995).
153. B. Halliwell and J.M. Gutteridge, in Free Radicals in Biologyand Medicine , 3rd ed., p. 134. New York,
Oxford University Press (1999).
154. X.H. Chen, H. Xie, J.L. Kong, and J.Q. Deng, Characterization for didodecy, l-dimethylammonium
bromide liquid crystal fi lm entrapping catalase with enhanced direct electron transfer rate. Biosens.
Bioelectron. 16 , 115-120 (2001).
155. Z. Zhang, S. Chouchane, R.S. Magliozzo, and J.F. Rusling, Direct voltammetry and catalysis with
Mycobacterium tuberculosis catalase-peroxidase, peroxidases, and catalase in lipid fi lms. Anal. Chem.
74 , 163-170 (2002).
156. H.Y. Lu, Z. Li, and N.F. Hu, Direct voltammetry and electrocatalytic properties of catalase incorpo-
rated in polyacrylamide hydrogel fi lms. Biophys. Chem. 104 , 623-632 (2003).
157. M.E. Lai and A. Bergel, Direct electrochemistry of catalase on glassy carbon electrodes.
Bioelectrochemistry 55 , 157-160 (2002).
158. E. Horozova, Z. Jordanowa, and V. Bogdanovskaya, Enzymatic and electrochemical reactions of cata-
lase immobilized on carbon materials. Z. Naturforsch. 50 , 499-504 (1995).
159. E. Horozova, N. Dimcheva, and Z. Jordanova, Adsorption, catalytic and electrochemical activity of
catalase immobilized on carbon materials. Z. Naturforsch. 52 , 639-644 (1997).
160. B.F. Erlanger, B.X. Chen, M. Zhu, and L. Brus, Binding of an anti-fullerene IgG monoclonal antibody
to single wall carbon nanotubes. Nano Lett. 1 , 465-467 (2001).
161. J.J. Davis, M.L.H. Green, H.A.O. Hill, Y.C. Leung, P.J. Sadler, J. Solan, A.V. Xavier, and S.C. Tsang,
The immobilisation of proteins in carbon nanotubes. Inorg. Chim. Acta 272 , 261-266 (1998).
162. M. Shim, N.W.S. Kam, R.J. Chen, Y. Li, and H. Dai, Functionalization of carbon nanotubes for bio-
compatibility and bio-molecular recognition. Nano. Lett. 2 , 285-288 (2002).
163. R.J. Chen, Y.G. Zhang, D.W. Wang, and H.J. Dai, Noncovalent sidewall functionalization of single-
walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123 , 3838-3839 (2001).
Search WWH ::




Custom Search