Biomedical Engineering Reference
In-Depth Information
88. F.H. Wu, G.C. Zhao, X.W. Wei, and Z.S. Yang, Electrocatalysis of tryptophan at multi-walled carbon
nanotube modifi ed electrode. Microchim. Acta 144 , 243-247 (2004).
89. B. Zeng and F. Huang, Electrochemical behavior and determination of fl uphenazine at multi-walled
carbon nanotubes/(3-mercaptopropyl)trimethoxysilane bilayer modifi ed gold electrodes. Talanta 64 ,
380-386 (2004).
90. S. Lu, Electrochemical determination of 8-azaguanine in human urine at a multi-carbon nanotubes
modifi ed electrode. Microchem. J . 77 , 37-42 (2004).
91. Y.H. Zhu, Z.L. Zhang, and D.W. Pang, Electrochemical oxidation of theophylline at multi-wall carbon
nanotube modifi ed glassy carbon electrodes. J. Electroanal. Chem . 581 , 303-309 (2005).
92. J.J. Davis, R.J. Coles, and H.A.O. Hill, Protein electrochemistry at carbon nanotube electrodes.
J. Electroanal. Chem. 440 , 279-282 (1997).
93. J. Wang, M. Li, Z. Shi, N. Li, and Z. Gu, Direct electrochemistry of cytochrome c at a glassy carbon
electrode modifi ed with single-wall carbon nanotubes. Anal. Chem. 74 , 1993-1997 (2002).
94. G.C. Zhao, Z.Z. Yin, L. Zhang, and X.W. Wei, Direct electrochemistry of cytochrome c on a
multi-walled carbon nanotube modifi ed electrode and its electrocatalytic activity for the reduction of
H 2 O 2 . Electrochem. Commun. 7 , 256-260 (2005).
95. G.C. Zhao, X.W. Wei, and Z.S. Yang, A nitric oxide biosensor based on myoglobin adsorbed on
multi-walled carbon nanotubes. Electroanalysis 17 , 630-634 (2005).
96. G.C. Zhao, L. Zhang, and X.W. Wei, An unmediated H 2 O 2 biosensor based on the enzyme-like activity
of myoglobin on multi-walled carbon nanotubes. Anal. Biochem. 329 , 160-161 2004).
97. G.C. Zhao, L. Zhang, X.W. Wei, Z.S. Yang, Myoglobin on multi-walled carbon nanotubes modifi ed
electrode: direct electrochemistry and electrocatalysis. Electrochem. Commun. 5 , 825-829 (2003).
98. C. Cai and J. Chen, Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube
electrode. Anal. Biochem. 325 , 285-292 (2004).
99. P. Yang, Q. Zhao, Z. Gu, and Q. Zhuang, The electrochemical behavior of hemoglobin on SWNTs/
DDAB fi lm modifi ed glassy carbon electrode. Electroanalysis 16 , 97-100 (2004).
100. Y.D. Zhao, Y.H. Bi, W.D. Zhang, and Q.M. Luo, The interface behavior of hemoglobin at carbon
nanotube and the detection for H 2 O 2 . Talanta 65 , 489-494 (2005).
101. M. Wang, Y. Shen, Y. Liu, T. Wang, F. Zhao, B. Liu, and S. Dong, Direct electrochemistry of micro-
peroxidase 11 using carbon nanotube modifi ed electrodes. J. Electroanal. Chem. 578 , 121-127 (2005).
102. Z. Xu, N. Gao, H. Chen, and S. Dong, Biopolymer and carbon nanotubes interface prepared by self-
assembly for studying the electrochemistry of microperoxidase-11. Langmuir 21 , 10 808-10 813
(2005).
103. A. Salimi, A. Noorbakhsh, and M. Ghadermarz, Direct electrochemistry and electrocatalytic
activity of catalase incorporated onto multiwall carbon nanotubes-modifi ed glassy carbon electrode.
Anal. Biochem. 344 , 16-24 (2005).
104. L. Wang, J. Wang, and F. Zhou, Direct electrochemistry of catalase at a gold electrode modifi ed with
single-wall carbon nanotubes. Electroanalysis 16 , 627-632 (2004).
105. Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, and S.F.Y. Li, Direct electrochemistry of horseradish
peroxidase at carbon nanotube powder microelectrode. Sens. Actuators B 87 , 168-172 (2002).
106. Y.D. Zhao, W.D. Zhang, H. Chen, and Q.M. Luo, Direct electron transfer of glucose oxidase molecules
adsorbed onto carbon nanotube powder microelectrode. Anal. Sci. 18 , 939-941 (2002).
107. J. Liu, A. Chou, W. Rahmat, M.N. Paddon-Row, and J.J. Gooding, Achieving direct electrical
connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 17 ,
38-46 (2005).
108. B.R. Azamian, J.J. Davis, K.S. Coleman, C.B. Bagshaw, and M.L.H. Green, Bioelectrochemical
single-walled carbon nanotubes. J. Am. Chem. Soc. 124 , 12 664-12 665 (2002).
109. J.H.T. Luong, S. Hrapovic, D. Wang, F. Bensebaa, and B. Simard, Solubilization of multiwall carbon
nanotubes by 3-aminopropyltriethoxysilane towards the fabrication of electrochemical biosensors with
promoted electron transfer. Electroanalysis 16 , 132-139 (2004).
110. S. Hrapovic, Y. Liu, K.B. Male, and J.H.T. Luong, Electrochemical biosensing platforms using
platinum nanoparticles and carbon nanotubes. Anal. Chem. 76 , 1083-1088 (2004).
Search WWH ::




Custom Search