Biomedical Engineering Reference
In-Depth Information
using such electrodes may be imminent for the recognition of species in cells as well
as other biomedical applications.
It is generally agreed that the tip portion of CNTs particularly those shortened with
oxidation treatments, is more reactive than the side wall of CNTs. Yet, the reason for the
presence of high catalytic activity of CNTs is still unclear, and more research activities
in this area using advanced spectroscopic and microscopic techniques are expected.
15.6 REFERENCES
1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354 , 56-58 (1991).
2. K. Gong, Y. Yan, M. Zhang, L. Su, S. Xiong, and L. Mao, Electrochemistry and electroanalytical
applications of carbon nanotubes: a review. Anal. Sci. 21 , 1383-1393 (2005).
3. A. Merkoci, Carbon nanotubes in analytical sciences. Microchim. Acta 152 ,157-174 (2006).
4. J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17 , 7-14 (2005).
5. Q. Zhao, Z. Gan, and Q. Zhuang, Electrochemical sensors based on carbon nanotubes. Electroanalysis
14 , 1609-1613 (2002).
6. J. Li, A. Cassell, L. Delzeit, J. Han, and M. Meyyappan, Novel three-dimensional electrodes: electro-
chemical properties of carbon nanotube ensembles. J. Phys. Chem. B 106 , 9299-9305 (2002).
7. F. Valentini, A. Amine, S. Orlanducci, M.L. Terranova, and G. Palleschi, Carbon nanotube purifi ca-
tion: preparation and characterization of carbon nanotube paste electrodes. Anal. Chem . 75 , 5413-5421
(2003).
8. P.M. Ajayan, Nanotubes from carbon. Chem. Rev. 99 , 1787-1799 (1999).
9. S.C. Tsang, P.J.F. Harris, and M.L.H. Green, Thinning and opening of carbon nanotubes by oxidation
using carbon dioxide. Nature 362 , 520-522 (1993).
10. M. Musameh, J. Wang, A. Merkoci, and Y. Lin, Low-potential stable NADH detection at carbon-
nanotube-modifi ed glassy carbon electrode. Electrochem. Commun. 4 , 743-746 (2002).
11. S. Sotiropoulou and N.A. Chaniotakis, Carbon nanotube array-based biosensor. Anal. Bioanal. Chem.
375 , 103-105 (2003).
12. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, and M.J. Heben, Storage of hydro-
gen in single-walled carbon nanotubes. Nature 386 , 377-379 (1997).
13. P.J.F. Harris, Carbon Nanotubes and Related Structures . Cambridge University Press, Cambridge
(1999).
14. M.D. Rubianes and G.A. Rivas, Carbon nanotubes paste electrode. Electrochem. Commun. 5 , 689-694
(2003).
15. J. Wang and M. Musameh, Carbon nanotube/Tefl on composite electrochemical sensors and biosensors.
Anal. Chem. 75 , 2075-2079 (2003).
16. P.J. Britto, K.S.V. Santhanam, and P.M. Ajayan, Carbon nanotube electrode for oxidation of dopamine.
Bioelectrochem. Bioenerg. 41 , 121-125 (1996).
17. P.G. Collins, A. Zettl, H. Bando, A. Thess, and R.E. Smalley, Nanotube nanodevice. Science 278 ,
100-102 (1997).
18. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, and R.E. Smalley, Nanotubes as nanoprobes in
scanning probe microscopy. Nature 384 , 147-150 (1996).
19. A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim,
and D. Tomanek, Unraveling nanotubes: fi eld emission from an atomic wire. Science 269 , 1550-1553
(1995).
20. M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Exceptionally high Young's modulus observed for indi-
vidual carbon nanotubes. Nature 381 , 678-680 (1996).
21. B.I. Yakobson, C.J. Brabec, and J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond
linear response. Phys. Rev. Lett. 76 , 2511-2514 (1996).
Search WWH ::




Custom Search