Biomedical Engineering Reference
In-Depth Information
139. T. Gueshi, K. Tokuda, and H. Matsuda, Voltammetry at partially covered electrodes. Part I.
Chronopotentiometry and chronoamperometry at model electrodes. J. Electroanal. Chem. 89 , 247-260
(1978).
140. G.S. Attard, P.N. Bartlett, N.R.B. Coleman, J.M. Elliott, J.R. Owen, and J.H. Wang, Mesoporous plati-
num fi lms from lyotropic liquid crystalline phases. Science 278 , 838-840 (1997).
141. P.N. Bartlett, P.N. Birkin, M.A. Ghanem, P. de Groot, and M. Sawickib, The electrochemical deposi-
tion of nanostructured cobalt fi lms from lyotropic liquid crystalline media. J. Electrochem. Soc. 148 ,
C119-C123 (2001).
142. G.S. Attard, P.N. Bartlett, N.R.B. Coleman, J.M. Elliott, and J.R. Owen, Lyotropic liquid crystalline
properties of nonionic surfactant/H 2 O/hexachloroplatinic acid ternary mixtures used for the production
of nanostructured platinum. Langmuir 14 , 7340-7342 (1998).
143. A.H. Whitehead, J.M. Elliott, J.R. Owen, and G.S. Attard, Electrodeposition of mesoporous tin fi lms.
Chem. Commun. , 331-332 (1999).
144. A.A. Karyakin, E.A. Puganova, I.A. Budashov, I.N. Kurochkin, E.E. Karyakina, V.A. Levchenko, V.N.
Matveyenko, and S.D. Varfolomeyev, Prussian Blue based nanoelectrode arrays for H 2 O 2 detection.
Anal. Chem. 76 , 474-478 (2004).
145. E.A. Puganova and A.A. Karyakin, New materials based on nanostructured Prussian blue for develop-
ment of hydrogen peroxide sensors. Sens. Actuators B chem. 109 , 167-170 (2005).
146. A.E.G. Cass, G. Davis, G.D. Francis, H.A.O. Hill, W.G. Aston, I.J. Higgins, E.V. Plotkin, L.D.L. Scott,
and A.P.F. Turner, Ferrocene-mediated enzyme electrode for amperometric detection of glucose. Anal.
Chem. 56 , 667-671 (1984).
147. Q.J. Chi and S.J. Dong, Amperometric biosensors based on the immobilization of oxidases in
a Prussian blue fi lm by electrochemical codeposition. Anal. Chim. Acta 310 , 429-436 (1995).
148. R. Wilson and A.P.F. Turner, Glucose oxidase: an ideal enzyme. Biosens. Bioelectr. 7 , 165-185 (1992).
149. M.S. Lin and W.C. Shih, Chromium hexacyanoferrate based glucose biosensor. Anal. Chim. Acta 381 ,
183-189 (1999).
150. M.S. Lin, T.F. Tseng, and W.C. Shih, Chromium(III) hexacyanoferrate(II)-based chemical sensor for
the cathodic determination of hydrogen peroxide. Analyst 123 , 159-163 (1998).
151. M.S. Lin and B.I. Jan, Determination of hydrogen peroxide by utilizing a cobalt(II)hexacyanoferrate-
modifi ed glassy carbon electrode as a chemical sensor. Electroanalysis 9 , 340-344 (1997).
152. S. Milardovic, I. Kruhak, D. Ivekovic, V. Rumenjak, M. Tkalcec, and B.S. Grabaric, Glucose deter-
mination in blood samples using fl ow injection analysis and an amperometric biosensor based on glu-
cose oxidase immobilized on hexacyanoferrate modifi ed nickel electrode. Anal. Chim. Acta 350 , 91-96
(1997).
153. Y. Mishima, J. Motonaka, K. Maruyama, and S. Ikeda, Determination of hydrogen peroxide using a
potassium hexacyanoferrate(III) modifi ed titanium dioxide electrode. Anal. Chim. Acta 358 , 291-296
(1998).
154. R. Garjonyte and A. Malinauskas, Operational stability of amperometric hydrogen peroxide sensors,
based on ferrous and copper hexacyanoferrates. Sens. Actuators, B B56 , 93-97 (1999).
155. A.A. Karyakin, O.V. Gitelmacher, and E.E. Karyakina, Prussian blue-based fi rst-generation biosensor.
A sensitive amperometric electrode for glucose. Anal. Chem. 67 , 2419-2423 (1995).
156. X. Zhang, J. Wang, B. Ogorevc, and U.E. Spichiger, Glucose nanosensor based on Prussian-blue
modifi ed carbon-fi ber cone nanoelectrode and an integrated reference electrode. Electroanalysis 11 ,
945-949 (1999).
157. S.A. Jaffari and J.C. Pickup, Novel hexacyanoferrate(III)-modifi ed carbon electrodes: application in
miniaturized biosensors with potential for in vivo glucose sensing. Biosens. Bioelect. 11 , 1167-1175
(1996).
158. S.A. Jaffari and A.P.F. Turner, Novel hexacyanoferrate(III) modifi ed graphite disc electrodes and their
application in enzyme electrodes.1. Biosens. Bioelectr. 12 , 1-9 (1997).
159. J.Z. Zhang and S.J. Dong, Cobalt(II)hexacyanoferrate fi lm modifi ed glassy carbon electrode for con-
struction of a glucose biosensor. Anal. Lett. 32 , 2925-2936 (1999).
160. I.L. Mattos, L. Gorton, T. Laurell, A. Malinauskas, and A.A. Karyakin, Development of biosensors
based on hexacyanoferrates. Talanta 52 , 791-799 (2000).
Search WWH ::




Custom Search