Biomedical Engineering Reference
In-Depth Information
66. P. Bergveld, ISFETs for physiological measurements, in Implantable Sensors for Closed-Loop Prosthetic
Systems (W.H. Ko, ed.), Futura Publishing Co., New York (1985).
67. Y.M. Mi, C. Green, and E. Bakker, Polymeric membrane pH electrodes based on electrically charged
ionophores. Anal. Chem . 70 , 5252-5258 (1998).
68. R. Yuan, Y.Q. Chai, and R.Q. Yu, Poly(vinyl chloride) matrix membrane pH electrode based on
4,4
-bis[(N,N-diakylamino)-methyl]azobenzene with a wide linear pH response range. Analyst 117 ,
1891-1893 (1991).
69. K. Hamdani and K.L. Cheng, Polyaniline pH electrodes. Microchem. J . 61 , 198-217 (1999).
70. R.B. Brown, Solid-state liquid chemical sensors, in Proc. Chemistry Forum 4th Int. Symp , pp. 120-126
(1997).
71. C. Espadas-Torre and M.E. Meyerhoff, Thrombogenic properties of untreated and poly(ethylene oxide)-
modifi ed polymeric matrices useful for preparing intraarterial ion-selective electrodes. Anal. Chem . 67 ,
3108-3114 (1995).
72. S. Ryu, J. Shin, G. Cha, R. Hower, and R. Brown, Polymer membrane matrices for fabricating potentio-
metric ion sensors, in Technical Digest 5th Int. Mtg. on Chemical Sensors , vol. 2 , pp. 961-964. Rome,
Italy, July 11-14 (1994).
73. K. Joung, H.J. Yoon, H. Nam, and K. Paeng, Development of pH sensor based on aromatic polyurethane
matrix. Microchem. J . 68 , 115-120 (2001).
74. H. Nam, G. Cha, T. Strong, J. Ha, J. Sim, R. Hower, S. Martin, and R. Brown, Micropotentometric sen-
sors. Proceedings of the IEEE 91 , 870-880 (2003).
75. X.J. Zhang, A. Fakler, and U.E. Spichiger, Design of pH microelectrodes based on ETHT 2418 and
measurement of pH profi le in instant noodles. Anal. Chim. Acta 445 , 57-65 (2001).
76. L. Padnick-Silver and R.A. Linsenmeier, Quantifi cation of in vivo anaerobic metabolism in the normal
cat retina through intraretinal pH measurements. Visual Neurosci. 19 , 793-806 (2002).
77. M.L. Pourciel-Gouzy, W. Sant, I. Humenyuk, L. Malaquin, X. Dollat, and P. Temple-Boyer,
Development of pH-ISFET sensors for the detection of bacterial activity. Sens. Actuators B . 103 ,
247-251 (2004).
78. M. Lehmann, W. Baumann, M. Brischwein, R. Ehret, M. Kraus, A. Schwinde, M. Bitzenhofer,
I. Freund, and B. Wolf, Non-invasive measurement of cell membrane associated proton gradients by ion-
sensitive fi eld effect transistor arrays for microphysiological and bioelectronical applications. Biosens.
Bioelectron. 15 , 117-124 (2000).
79. S. Martinoia, G. Massobrio, and L. Lorenzelli, Modeling ISFET microsensor and ISFET-based
microsystems: a review. Sens. Actuators B . 105 , 14-27 (2005).
80. J. Janata, Principles of Chemical Sensors , pp. 81-107. Plenum Press, New York (1989).
81. S. Katayama, N. Akao, N. Hara, and K. Sugimotob, Al 2 O 3 ß Ta 2 O 5 ß ZrO 2 thin fi lms having high cor-
rosion resistance to strong acid and alkali solutions. J. Electrochem. Soc. 152 , B286-B290 (2005).
82. P. Bergveld, Thirty years of ISFETOLOGY, what happened in the past 30 years and what may happen in
the next 30 years. Sens. Actuators B . 88 , 1-20 (2003).
83. D. Rolka, A. Poghossian, and M.J. Schoning, Integration of a capacitive EIS sensor into a FIA system
for pH and penicillin determination. Sensors 4 , 84-94 (2004).
84. A. Smit, M. Pollard, P. Cleaton-Jones, and A. Preston, A comparison of three electrodes for the meas-
urement of pH in small volumes. Caries Res. 31 , 55-59 (1997).
85. P.A. Hammond and D.R.S. Cumming, Performance and system-on-chip integration of an unmodifi ed
CMOS ISFET. Sens. Actuators B . 111 - 112 , 254-258 (2005).
86. T. Velten, H.H. Ruf, D. Barrow, N. Aspragathos, P. Lazarou, E. Jung, C.K. Malek, M. Richter, and
J. Kruckow, Packaging of bio-MEMS: strategies, technologies, and applications. IEEE Trans. Adv.
Packaging 28 , 533-546 (2005).
87. A. Fog and R.P. Buck, Electronic semiconducting oxides as pH sensors. Sens. Actuators 5 , 137-146 (1984).
88. K.G. Kreider, M.J. Tarlov, and J.P. Cline, Sputtered thin-fi lm pH electrodes of platinum, palladium,
ruthenium, and iridium oxides. Sens. Actuators B . 28 , 167-172 (1995).
89. M.L. Hitchman and S. Ramanathan, Evaluation of iridium oxide electrodes formed by potential cycling
as pH probes. Analyst 113 , 35-39 (1988).
Search WWH ::




Custom Search