Biomedical Engineering Reference
In-Depth Information
71. K. Tammeveski, T. Tenno, A.A. Mashirin, E.W. Hillhouse, P. Manning, and C.J. McNeil, Superoxide
electrode based on covalently immobilized cytochrome c: modeling studies. Free Radical Biol. Med. 25 ,
973-978 (1998).
72. J. Chen, U. Wollenberger, F. Lisdat, B. Ge, and F.W. Scheller, Superoxide sensor based on hemin modi-
fi ed electrode. Sens. Actuators B. 70 , 115-120 (2000).
73. J. Xue, X. Xian, X. Ying, J. Chen, L. Wang, and L. Jin, Fabrication of an ultramicrosensor for measure-
ment of extracellular myocardial superoxide. Anal. Chim. Acta. 405 , 77-85 (2000).
74. W. Scheller, W. Jin, E. Ehrentreich-Forster, B. Ge, F. Lisdat, R. Buttemeier, U. Wollenberger, and
F.W. Scheller, Cytochrome c-based superoxide sensor for in vivo application. Electroanalysis . 11 ,
703-706 (1999).
75. K.V. Gobi and F. Mizutani, Effi cient mediatorless superoxide sensors using cytochrome c-modifi ed
electrodes. Surface nano-organization for selectivity and controlled peroxidase activity. J. Electroanal.
Chem . 484 , 172-181 (2000).
76. C.J. McNeil, D. Athey, and W.O. Ho, Direct electron transfer bioelectronic interfaces: application to
clinical analysis . Biosens. Bioelectron. 10 , 75-83 (1995).
77. V. Lvovich and A. Scheeline, Amperometric sensors for simultaneous superoxide and hydrogen pero-
xide detection. Anal. Chem. 69 , 454-462 (1997).
78. L. Campanella, L. Persi, and M. Tomassetti, A new tool for superoxide and nitric oxide radicals deter-
mination using suitable enzymatic sensors. Sens. Actuators B. 68 , 351-359 (2000).
79. S. Mesaros, Z. Vankova, A. Mesarosova, P. Tomcik, and S. Grunfeld, Electrochemical determination of
superoxide and nitric oxide generated from biological samples. Bioelectrochem. Bioenerg. 46 , 33-37 (1998).
80. S. Mesaros, Z. Vankova, S. Grunfeld, A. Mesarosova, and T. Malinski, Preparation and optimization of
superoxide microbiosensor. Anal. Chim. Acta . 358 , 27-33 (1998).
81. L. Campanella, G. Favero, L. Persi, and M. Tomassetti, New biosensor for superoxide radical used to
evidence molecules of biomedical and pharmaceutical interest having radical scavenging properties.
J. Pharm. Biomed. Anal. 23 , 69-76 (2000).
82. M.I. Song, F.F. Bier, and F.W. Scheller, A method to detect superoxide radicals using Tefl on membrane
and superoxide dismutase . Bioelectrochem. Bioenerg. 38 , 419-422 (1995).
83. S. Descroix and F. Bedioui, Evaluation of the selectivity of overoxidized polypyrrole/superoxide dis-
mutase based microsensor for the electrochemical measurement of superoxide anion in solution.
Electroanalysis. 13 , 524-528 (2001).
84. F. Matsumoto, K. Tokuda, and T. Ohsaka, Electrogeneration of superoxide ion at mercury electrodes
with a hydrophobic adsorption fi lm in aqueous media. Electroanalysis. 8 , 648-653 (1996).
85. T. Ohsaka, F. Matsumoto, and K. Tokuda, An electrochemical approach to dismutation of superoxide
ion using a biological model system with a hydrophobic/hydrophilic interface, in Frontiers of Reactive
Oxygen Species in Biological and Medicine (K. Asaka and T. Yoshikawa, eds), pp. 91-93. Elsevier
Science B.V.: Oxford (1994).
86. C. Privat, O. Stepien, M. David-Dufi lho, A. Brunet, F. Bedioui, P. Marche, J. Devynck, and
M.-A. Devynck, Superoxide release from interleukin-1
-stimulated human vascular cells: in situ elec-
trochemical measurement. Free Radicals Bio. Med. 27 , 554-559 (1999).
87. L. Campanella, G. Favero, and M. Tomassetti, A modifi ed amperometric electrode for the determination
of free radicals. Sens. Actuators B. 44 , 559-565 (1997).
88. C.J. McNeil, K.R. Greenough, P.A. Weeks, and C.H. Self, Electrochemical sensors for direct reagentless
measurement of superoxide production by human neutrophils. Free Rad. Res. Comm. 17 , 399-406 (1992).
89. C.M. Tolias, J.C. McNeil, J. Kazlauskate, and E.W. Hillhouse, Superoxide generation from constitutive
nitric oxide synthase in astrocytes in vitro regulates extracellular nitric oxide availability. Free Radical
Biol. Med. 26 , 99-106 (1999).
90. R.H. Fabian, D.S. deWitt, and T.A. Kent, The 21-aminosteroid U-74389G reduces cerebral superoxide
anion concentration following fl uid percussion injury of the brain. J. Neurotroma. 15 , 433-440 (1998).
91. J.C. Cooper, G. Thompson, and C.J. McNeil, Direct electron transfer between immobilized cytochrome
c and gold electrodes. Mol. Cryst. Liq. Cryst . 235 , 127-132(1993).
92. C.J. McNeil, K.A. Smith, P. Bellavite, and J. Bannister, Application of the electrochemistry of cytochrome
c to the measurement of superoxide radical production. Free Rad. Res. Comm. 7 , 89-96 (1989).
β
Search WWH ::




Custom Search