Biomedical Engineering Reference
In-Depth Information
Chinese Academy of Sciences (Grant No. KJCX2-SW-H06 for LM), and Grant-in-
Aids from the Ministry of Education, Culture, Sports, Science and Technology, Japan
(Grant Nos 417, 12875164, and 10305064 for OT). L. Mao thanks NSF of China for
Distinguished Young Scholars (Grant No. 20625515) and Ms Ling Xiang and Ping Yu
for their kind assistance.
6.7 REFERENCES
1. P. George and J.S. Griffi th, Electron transfer and enzyme catalysis, in The Enzymes (P.D. Boyer,
H. Lardy, and K. Myrback, eds), pp. 1347-1389 Vol. 1, Academic Press, New York (1959).
2. H. Taube, Mechanisms of oxidation with oxygen. J. Gen. Physiol. 49 , 29-52 (1965).
3. J.W. McLeod, J. Gordon, and J. Pathol, The problem of intolerance of oxygen by anaerobic bacteria.
Bacteriol. 26 , 332-343 (1923).
4. A.B. Callow, Catalase in bacteria and its relation to anaerobiosis. J. Pathol. Bacteriol. 26 , 320-325
(1923).
5. G. Czapski, Radiation chemistry of oxygenated aqueous solutions. Ann. Rev. Phys. Chem. 22 , 171-208
(1971).
6. J.M. McCord, B.B. Keele Jr, and I. Fridovich, Enzyme-based theory of obligate anaerobiosis: physi-
ological function of superoxide dismutase. Proc. Natl. Acad. Sci. U.S.A. 68 , 1024-1027 (1971).
7. I. Fridovich, Superoxide radical and superoxide dismutase. Acc. Chem. Res. 5, 321-326 (1972).
8. E.M. Gregory and I. Fridovich, Induction of superoxide dismutase by molecular oxygen. J. Bacteriol.
114 , 543-548 (1973).
9. E.M. Gregory and I. Fridovich, Oxygen toxicity and the superoxide dismutase. J. Bacteriol. 114 ,
1193-1197 (1973).
10. D. Behar, G. Czapski, J. Rabani, L.M. Dorfman, and H.A. Schwarz, Acid dissociation constant and
decay kinetics of the perhydroxyl radical. J. Phys. Chem. 74 , 3209-3213 (1970).
11. M.E. Poever and B.S. White, Electrolytic reduction of oxygen in aprotic solvents: the superoxide ion.
Electrochim. Acta . 11 , 1061-1067 (1966).
12. A.D. McElroy and J.S. Hashman, Synthesis of tetramethylammonium superoxide. Inorg. Chem. 3 ,
1798-1799 (1964).
13. D.L. Maricle and W.G. Hodgson, Reduction of oxygen to superoxide anion in aprotic solvents. Anal.
Chem. 37 , 1562-1565 (1965).
14. D.T. Sawyer and J.L. Roberts, Electrochemistry of oxygen and superoxide ion in dimethyl sulfoxide at
platinum, gold, and mercury electrodes. J. Electroanal. Chem. 12 , 90-101 (1966).
15. T. Odajima and I. Yamazaki, Myeloneperoxidase of the leukocyte of normal blood. 3. The reaction of
ferric myeloperoxidase with superoxide anion. Biochim. Biophys. Acta . 284 , 355-359 (1972).
16. J. Chevalet, F. Roulle, L. Gierst, and J.P. Lambert, Electrogeneration and some properties of the super-
oxide ion in aqueous solutions. J. Electroanal. Chem. Interfacial Electrochem. 390 , 201-216 (1972).
17. H.J. Forman and I. Fridovich, Electrolytic univalent reduction of oxygen in aqueous solution demon-
strated with superoxide dismutase. Science . 175 , 339 (1972).
18. J.H. Baxendale, The fl ash photolysis of water and aqueous solutions. Radiat. Res. 17 , 312-326 (1962).
19. G.E. Adams, J.W. Boag, and B.D. Michael, The fl ash photolysis of water and aqueous solutions. Proc.
Roy. Soc. (London) , A289 , 321-326 (1965).
20. E. Hayon and J. McGarvey, Flash photolysis in the vacuum ultraviolet region of sulfate, carbonate, and
hydroxyl ions in aqueous solutions. J. Phys. Chem. 71 , 1472-1477 (1967).
21. J.M. McCord and I. Fridovich, Production of O 2 in photolyzed water demonstrated through the use of
superoxide dismutase. Photochem. Photobiol. 17 , 115-121 (1973).
22. G.H. Czapski and B.H.J. Bielski, The formation and decay of H 2 O 3 and HO 2 in electronirradiated aque-
ous solutions. J. Phys. Chem. 67 , 2180-2184 (1963).
Search WWH ::




Custom Search