Biomedical Engineering Reference
In-Depth Information
41. S. Chen, L. Liu, J. Zhou, and S. Jiang, Controlling antibody orientation on charged self-assembled mon-
olayers. Langmuir 19 , 2859-2864 (2003).
42. M. Akram, M.C. Stuart, and D.K.Y. Wong, Direct application strategy to immobilize a thioctic acid self-
assembled monolayer on a gold electrode. Anal. Chim. Acta 504 , 243-251 (2004).
43. L. Korecka, Z. Bilkova, M. Holeapek, J. Kralovsky, M. Benes, J. Lenfeld, N. Minc, R. Cecal,
J.-L. Viovy, and M. Przybylski, Utilization of newly developed immobilized enzyme reactors for
preparation and study of immunoglobulin G fragments. Journal of Chromatography, B: Analytical
Technologies in the Biomedical and Life Sciences 808 , 15-24 (2004).
44. H. Zhang and M.E. Meyerhoff, Gold-coated magnetic particles for solid-phase immunoassays: enhanc-
ing immobilized antibody binding effi ciency and analytical performance. Anal. Chem. 78 , 609-616
(2006).
45. M.-P. Marco and D. Barcelo, Environmental applications of analytical biosensors. Meas. Sci. Technol. 7 ,
1547-1562 (1996).
46. D. Purvis, O. Leonardova, D. Farmakovsky, and V. Cherkasov, An ultrasensitive and stable potentiomet-
ric immunosensor. Biosens. Bioelectron. 18 , 1385-1390 (2003).
47. R.M. Pemberton, J.P. Hart, P. Stoddard, and J.A. Foulkes, A comparison of 1-naphthyl phosphate and 4
aminophenyl phosphate as enzyme substrates for use with a screen-printed amperometric immunosensor
for progesterone in cows' milk. Biosens. Bioelectron. 14 , 495-503 (1999).
48. E.J. Moore, M. Pravda, M.P. Kreuzer, and G.G. Guilbault, Comparative study of 4-aminophenyl phos-
phate and ascorbic acid 2-phosphate, as substrates for alkaline phosphatase based amperometric immu-
nosensor. Anal. Lett. 36 , 303-315 (2003).
49. M.S. Wilson and R.D. Rauh, Hydroquinone diphosphate: an alkaline phosphatase substrate that does not
produce electrode fouling in electrochemical immunoassays. Biosens. Bioelectron. 20 , 276-283 (2004).
50. M. O'Connor, S.N. Kim, A.J. Killard, R.J. Forster, M.R. Smyth, F. Papadimitrakopoulos, and
J.F. Rusling, Mediated amperometric immunosensing using single walled carbon nanotube forests.
Analyst (Cambridge, United Kingdom) 129 , 1176-1180 (2004).
51. B. Law, Immunoassay: A Practical Guide, Taylor & Francis, London (1996).
52. K. di Gleria, H.A. Hill, C.J. McNeil, and M.J. Green, Homogeneous ferrocene-mediated amperometric
immunoassay. Anal. Chem. 58 , 1203-1205 (1986).
53. M. Nakayama, T. Ihara, K. Nakano, and M. Maeda, DNA sensors using a ferrocene-oligonucleotide
conjugate. Talanta 56 , 857-866 (2002).
54. R. Ojani, J.B. Raoof, and A. Alinezhad, Catalytic oxidation of sulfi te by ferrocenemonocarboxylic
acid at the glassy carbon electrode. Application to the catalytic determination of sulfi te in real sample.
Electroanalysis 14 , 1197-1203 (2002).
55. H.S. Mandal and H.-B. Kraatz, Ferrocene-histidine conjugates: N-ferrocenoyl-histidyl(imN-
ferrocenoyl)methylester: synthesis and structure. J. Organomet. Chem. 674 , 32-37 (2003).
56. C. Duan and M.E. Meyerhoff, Immobilization of proteins on gold coated porous membranes via an acti-
vated self-assembled monolayer of thioctic acid. Mikrochim. Acta 117 , 195-206 (1995).
57. M. Akram, M.C. Stuart, and D.K.Y. Wong, Signal generation at an electrochemical immunosensor via
the direct oxidation of an electroactive label. Electroanalysis 18 , 237-246 (2006).
58. M. Okochi, H. Ohta, T. Tanaka, and T. Matsunaga, Electrochemical probe for on-chip type fl ow immu-
noassay: immunoglobulin G labeled with ferrocenecarboaldehyde. Biotechnol. Bioeng. 90 , 14-19
(2005).
59. M. Hromadova, M. Salmain, N. Fischer-Durand, L. Pospisil, and G. Jaouen, Electrochemical microbead-
based immunoassay using an (h5-cyclopentadienyl)tricarbonylmanganese redox marker bound to bovine
serum albumin. Langmuir 22 , 506-511 (2006).
60. J. Min and A.J. Baeumner, Characterization and optimization of interdigitated ultramicroelectrode
arrays as electrochemical biosensor transducers. Electroanalysis 16 , 724-729 (2004).
61. J.H. Thomas, S.K. Kim, P.J. Hesketh, H.B. Halsall, and W.R. Heineman, Microbead-based electrochem-
ical immunoassay with interdigitated array electrodes. Anal. Biochem. 328 , 113-122 (2004).
62. T.L. Lasseter, W. Cai, and R.J. Hamers, Frequency-dependent electrical detection of protein binding
events. Analyst (Cambridge, United Kingdom) 129 , 3-8 (2004).
Search WWH ::




Custom Search