Biomedical Engineering Reference
In-Depth Information
systems, leading to further progress in the manufacture of miniaturized immunoassay
devices. This will open up opportunities for developing hand-held tools for instant
on-site pharmaceutical and clinical diagnosis, particularly in response to the gradual
shift towards home-based diagnosis. Another challenge in this area is the desire to inte-
grate immunosensors in an array format to perform simultaneous analysis of multiple
analytes. In conclusion, new immunosensor technologies are anticipated in the near
future in response to these exciting opportunities.
5.8 REFERENCES
1. A.J. Killard, B. Deasy, R. O'Kennedy, and M.R. Smyth, Antibodies: production, functions and applica-
tions in biosensors. TrAC, Trends Anal. Chem. 14 , 257-266 (1995).
2. N.J. Ronkainen-Matsuno, J.H. Thomas, H.B. Halsall, and W.R. Heineman, Electrochemical immu-
noassay moving into the fast lane. TrAC, Trends Anal. Chem. 21 , 213-225 (2002).
3. O.A. Sadik and J.M. van Emon, Applications of electrochemical immunosensors to environmental mon-
itoring. Biosens. Bioelectron. 11 , i-xi (1996).
4. A.L. Ghindilis, P. Atanasov, M. Wilkins, and E. Wilkins, Immunosensors: electrochemical sensing and
other engineering approaches. Biosens. Bioelectron. 13 , 113-131 (1998).
5. C.A. Wijayawardhana, H.B. Halsall, and W.R. Heineman, Electrochemical immunoassay. Encyclopedia
of Electrochemistry 9 , 145, 147-174 (2002).
6. C.A. Wijayawardhana, H.B. Halsall, and W.R. Heineman, Milestones of electrochemical immunoassay
at Cincinnati. Electroanalytical Methods for Biological Materials 329-365 (2002).
7. A. Bange, H.B. Halsall, and W.R. Heineman, Microfl uidic immunosensor systems. Biosens. Bioelectron.
20 , 2488-2503 (2005).
8. I. Roit, J. Brostoff, and D. Male, Immunology, Mosby International Ltd, London (1998).
9. M. Diaz-Gonzalez, D. Hernandez-Santos, M.B. Gonzalez-Garcia, and A. Costa-Garcia, Development of
an immunosensor for the determination of rabbit IgG using streptavidin modifi ed screen-printed carbon
electrodes. Talanta 65 , 565-573 (2005).
10. K. Matsumoto, A. Torimaru, S. Ishitobi, T. Sakai, H. Ishikawa, K. Toko, N. Miura, and T. Imato,
Preparation and characterization of a polyclonal antibody from rabbit for detection of trinitrotoluene by
a surface plasmon resonance biosensor. Talanta 68 , 305-311 (2005).
11. R.M. Pemberton, T.T. Mottram, and J.P. Hart, Development of a screen-printed carbon electrochemical
immunosensor for picomolar concentrations of estradiol in human serum extracts. J. Biochem. Biophys.
Methods 63 , 201-212 (2005).
12. Y.-M. Zhou, Z.-Y. Wu, G.-L. Shen, and R.-Q. Yu, An amperometric immunosensor based on Nafi on-
modifi ed electrode for the determination of Schistosoma japonicum antibody. Sensors and Actuators, B:
Chemical 89 , 292-298 (2003).
13. T.-S. Zhong and G. Liu, Silica sol-gel amperometric immunosensor for Schistosoma japonicum anti-
body assay. Anal. Sci. 20 , 537-541 (2004).
14. L. Ball, A. Jones, P. Boogaard, W. Will, and P. Aston, Development of a competitive immunoassay for
the determination of N-(2-hydroxypropyl)valine adducts in human haemoglobin and its application in
biological monitoring. Biomarkers 10 , 127-137 (2005).
15. Z.P. Aguilar, W.R.I.V. Vandaveer, and I. Fritsch, Self-contained microelectrochemical immunoassay for
small volumes using mouse igg as a model system. Anal. Chem. 74 , 3321-3329 (2002).
16. S. Chemburu, E. Wilkins, and I. Abdel-Hamid, Detection of pathogenic bacteria in food samples using
highly-dispersed carbon particles. Biosens. Bioelectron. 21 , 491-499 (2005).
17. K.L. Hoffman, G.H. Parsons, L.J. Allerdt, J.M. Brooks, and L.E. Miles, Elimination of “hook-effect” in
two-site immunoradiometric assays by kinetic rate analysis. Clin. Chem. 30 , 1499-1501 (1984).
18. J.T. Wu and S.E. Christensen, Effect of different test designs of immunoassays on “hook effect” of CA
19-9 measurement. J. Clin. Lab. Anal. 5 , 228-232 (1991).
Search WWH ::




Custom Search