Biomedical Engineering Reference
In-Depth Information
37. J.H. Yun, V.C. Yang, and M.E. Meyerhoff, Protamine-sensitive polymer membrane electrode: charac-
terization and bioanalytical applications. Anal. Biochem. 224 , 212-220 (1995).
38. B. Fu, E. Bakker, J.H. Yun, V.C. Yang, and M.E. Meyerhoff, Response mechanism of polymer mem-
brane-based potentiometric polyion sensors. Anal. Chem. 66 , 2250-2259 (1994).
39. J.H. Yun, B. Fu, M.E. Meyerhoff, and V.C. Yang, A disposable, coated wire heparin sensor. ASAIO J.
40 , M401-M405 (1994).
40. J.H. Yun, L. Lee, J.A. Wahr, V.C. Yang, and M.E. Meyerhoff, Clinical application of disposable heparin
sensors. Blood heparin measurements during open heart surgery. ASAIO J. 41 , M661-M664 (1995).
41. N. Ramamurthy, N. Baliga, J. Wahr, U. Schaller, V.C. Yang, and M.E. Meyerhoff, Improved polycation-
sensitive membrane electrode for monitoring heparin levels in whole blood via protamine titration. Clin.
Chem. , 606-613 (1998).
42. N. Ramamurthy, N. Baliga, T.W. Wakefi eld, P.C. Andrews, V.C. Yang, and M.E. Meyerhoff,
Determination of low-molecular-weight heparins and their binding to protamine and a protamine analog
using polyion-sensitive membrane electrodes. Anal. Biochem. 266 , 116-124 (1999).
43. D.P. Thomas, and R.E. Merton, A low-molecular weight heparin compared with unfractionated heparin.
Thromb. Res. 28 , 343-350 (1982).
44. N. Durust and M.E. Meyerhoff, Determination of pentosan polysulfate and its binding to polycationic
species using polyion-sensitive membrane electrodes. Anal. Chim. Acta 432 , 253-260 (2001).
45. J.M. Esson and M.E. Meyerhoff, Polyion-sensitive membrane electrodes for detecting phosphate-rich
biological polyanions. Electroanalysis 9 , 1325-1330 (1997).
46. E.B. Ong and A. Johnson, Anal. Biochem. , 568-582 (1976).
47. L.-C. Chang, M.E. Meyerhoff, and V.C. Yang, Electrochemical assay of plasminogen activators in
plasma using polyion-sensitive membrane electrode detection. Anal. Biochem. 276 , 8-12 (1999).
48. I.S. Han, N. Ramamurthy, J.H. Yun, U. Schaller, M.E. Meyerhoff, and V.C. Yang, Selective monitoring
of peptidase activities with synthetic polypeptide substrates and polyion-sensitive membrane electrode
detection. FASEB J. 10 , 1621-1626 (1996).
49. S. Mathison and E. Bakker, Renewable pH cross-sensitive potentiometric heparin sensors with incorpo-
rated electrically charged H + ionophores. Anal. Chem. 71 , 4614-4621 (1999).
50. A. Shvarev and E. Bakker, Pulsed galvanostatic control of ionophore-based polymeric ion sensors. Anal.
Chem. 75 , 4541-4550 (2003).
51. A. Shvarev and E. Bakker, Response characteristics of a reversible electrochemical sensor for the
polyion protamine. Anal. Chem. 77 , 5221-5228 (2005).
52. E. Bakker and A.J. Meir, How do pulsed amperometric ion sensors work? A simple PDE model. Siam
Review 45 , 327-344 (2003).
53. A. Shvarev and E. Bakker, Reversible electrochemical detection of nonelectroactive polyions. J. Am.
Chem. Soc. 125, 11[ts]192-11[ts]193 (2003).
54. S. Makarychev-Mikhailov, A. Shvarev, and E. Bakker, Pulstrodes: triple pulse control of potentiometric
sensors. J. Am. Chem. Soc. 126 , 10 548-10 549 (2004).
55. A. Shvarev and E. Bakker, Distinguishing free and total calcium with a single pulsed galvanostatic ion-
selective electrode. Talanta 63 , 195-200 (2004).
56. T. Sokalski, T. Zwickl, E. Bakker, and E. Pretsch, Lowering the detection limit of solvent polymeric ion-
selective membrane electrodes. 1. Steady-state ion fl ux considerations. Anal. Chem. 71 , 1204-1209 (1999).
57. T. Zwickl, T. Sokalski, and E. Pretsch, Steady-state model calculations predicting the infl uence of key
parameters on the lower detection limit and ruggedness of solvent polymeric membrane ion-selective
electrodes. Electroanalysis 11 , 673-680 (1999).
58. S. Makarychev-Mikhailov, A. Shvarev, and E. Bakker, Calcium pulstrodes for measurements in physi-
ological fl uids. Anal. Chem. (submitted).
59. D. Henn and K. Cammann, Voltammetric ion-selective electrodes (VISE). Electroanalysis 12 , 1263-
1271 (2000).
60. M. Senda, H. Katano, and M. Yamada, Amperometric ion-selective electrode. Voltammetric theory and
analytical applications at high concentration and trace levels. J. Electroanal. Chem. 468 , 34-41 (1999).
61. M. Senda, H. Katano, and M. Yamada, Amperometric ion-selective electrode. Voltammetric theory and
analytical applications at high concentration and trace levels. J. Electroanal. Chem. 475 , 90-98 (1999).
Search WWH ::




Custom Search