Biomedical Engineering Reference
In-Depth Information
e
rc
(
ϕ−ϕ
)
ln(/)
αψ−ψ
(
)
ln(/)
15
44
b
a
15
44
b
a
ε=−
(3.85)
rz
ba
rc
ba
=− ϕ−ϕ
(
)
ln(/) ,
=− ψ−ψ
(
)
ln(/)
b
a
b
a
E
H
(3.86)
r
r
rba
rba
Substituting Equation (3.82)-(3.86) yields
r s
2 *
2
A
F
cc
c
FT Pt
ba c
+
π−
()
=
33
12
0
2
eAe
*
()
c
*
[
*
T
pt
( )]
FTc
*
+
ββ +
+ϖ+
33
1
2
0
13
1
013
*
2
(
)
3
11
s
s
*
A
ϖ
[2 ln(/) ]
r
a
A
F
FT Pt
ba
+
π−
( )
rr
zz
*
2
0
2
+
+
FT
(
c
+
c
)
1
0
11
12
*
2
c
(
)
11
3
(3.87)
2
cc
c
ϖ
φ−φ
e
c
13
12
b
a
15
*
*
E
s
−ββ+ −
2
c
[
T
pt
()]
ba A
+
A
13
1
2
0
r
zr
r
ln(/)
11
44
ψ−ψ
+ α
b
a
E
15
s
G
A
r
zr
rba
ln(/)
c
44
In comparison with Equation (3.37), the only difference is due to the last term
(underlined term).
As numerical illustration of the bone devolution process, the results pre-
sented in Qu and Qin [11] are summarized here. In these authors' work, a
femur with a = 25 mm and b = 35 mm is considered. The material properties
assumed for the bone are
c 11 = 15(1 + e )GPa, c 12 = c 13 = 6.6(1 + e )GPa, c 33 = 12(1 = e )GPa,
c 44 = 4.4(1 + e )GPa, λ 1 = 0.621(1 + e ) × 10 5 NK −1 m −2 ,
λ 3 = 0.55(1 + e ) × 10 5 NK −1 m −2 ,
χ 3 = 0.133(1 + e )CK −1 m −2
(3.88)
e 31 = −0.435(1 + e )C/m 2 ,
e 33 = 1.75(1 + e )C/m 2 ,
e 15 = 1.14(1 + e )C/m 2 ,
κ 1 = 111.5(1 + e 0 ,
α 15 = 550(1 + e ) N/A m
κ 3 = 126(1 + e 0 , κ 0 = 8.85 × 10 −12 C 2 /Nm 2 = permittivity of free space
The remodeling rate coefficients are assumed to be
C 0 = 3.09 × 10 −9 sec −1 , C 1 = 2 × 10 −7 sec −1 , C 2 = 10 −6 sec −1
Search WWH ::




Custom Search