Biomedical Engineering Reference
In-Depth Information
35. Williams G., Watts D. C. Non-symmetrical dielectric relaxation behaviour
arising from a simple empirical decay function. Transactions of the Faraday Society
66 (565P): 80-85 (1970).
36. Cowin S. C. The mechanical and stress adaptive properties of bone. Annals of
Biomedical Engineering 11 (3-4): 263-295 (1983).
37. Steinber Me., Bosch A., Schwan A., Glazer R. Electrical potentials in stressed
bone. Clinical Orthopaedics and Related Research 61: 294-300 (1968).
38. Minary-Jolandan M., Yu M. F. Uncovering nanoscale electromechanical hetero-
geneity in the subfibrillar structure of collagen fibrils responsible for the piezo-
electricity of bone. ACS Nano 3 (7): 1859-1863 (2009).
39. Fratzl P., Weinkamer R. Nature's hierarchical materials. Progress in Materials
Science 52 (8): 1263-1334 (2007).
40. Jager I., Fratzl P. Mineralized collagen fibrils: A mechanical model with a stag-
gered arrangement of mineral particles. Biophysical Journal 79 (4): 1737-1746
(2000).
41. Wang X. D., Qian C. J. Prediction of microdamage formation using a mineral-
collagen composite model of bone. Journal of Biomechanics 39 (4): 595-602 (2006).
42. Ascenzi M. G., Lomovtsev A. Collagen orientation patterns in human second-
ary osteons, quantified in the radial direction by confocal microscopy. Journal of
Structural Biology 153 (1): 14-30 (2006).
43. Bills P. M., Lewis D., Wheeler E. J. Mineral-collagen orientation relationships in
bone. Journal of Crystallographic and Spectroscopic Research 12 (1): 51-53 (1982).
44. Kotha S. P., Guzelsu N. The effects of interphase and bonding on the elastic
modulus of bone: Changes with age-related osteoporosis. Medical Engineering &
Physics 22 (8): 575-585 (2000).
45. Pollack S. R., Korostoff E., Sternberg M. E., Koh J. Stress-Generated potentials
in bone: Effects of collagen modifications. Journal of Biomedical Materials Research
11 (5): 677-700 (1977).
Search WWH ::




Custom Search