Biomedical Engineering Reference
In-Depth Information
53. Hauschka P. Growth factors effects. In Bone, vol. 1, ed. Hall, B. K., 512 pp. Boca
Raton, FL: CRC Press (1989).
54. Bonewald L. F., Dallas S. L. Role of active and latent transforming growth-
factor-beta in bone formation. Journal of Cellular Biochemistry 55 (3): 350-357 (1994).
55. Alliston T., Choy L., Ducy P., Karsenty G., Derynck R. TGF-beta-induced repres-
sion of CBFA1 by SMAD3 decreases cbfa1 and osteocalcin expression and inhib-
its osteoblast differentiation. Embo Journal 20 (9): 2254-2272 (2001).
56. Schriefer J. L., Warden S. J., Saxon L. K., Robling A. G., Turner C. H. Cellular
accommodation and the response of bone to mechanical loading. Journal of
Biomechanics 38 (9): 1838-1845 (2005).
57. Robling A. G., Burr D. B., Turner C. H. Recovery periods restore mechanosensi-
tivity to dynamically loaded bone. Journal of Experimental Biology 204 (19): 3389-
3399 (2001).
58. Saxon L. K., Robling A. G., Alam I., Turner C. H. Mechanosensitivity of the rat
skeleton decreases after a long period of loading, but is improved with time off.
Bone 36 (3): 454-464 (2005).
59. Bergmann G., Graichen F., Rohlmann A. Hip joint force measurements. Available
from <http://www.medizin.fu-berlin.de/missing.html> (2003).
60. Turner C. H., Forwood M. R., Otter M. W. Mechanotransduction in bone: Do
bone cells act as sensors of fluid flow? FASEB Journal 8 (11): 875-878 (1994).
61. Warden S. J., Turner C. H. Mechanotransduction in the cortical bone is most
efficient at loading frequencies of 5-10 Hz. Bone 34 (2): 261-270 (2004).
62. Rubin C., Xu G., Judex S. The anabolic activity of bone tissue, suppressed by
disuse, is normalized by brief exposure to extremely low-magnitude mechani-
cal stimuli. FASEB Journal 15(12): 2225-2229 (2001).
63. Burr D. B., Robling A. G., Turner C. H. Effects of biomechanical stress on bones
in animals. Bone 30 (5): 781-786 (2002).
64. Rubin C., Turner A. S., Bain S., Mallinckrodt C., McLeod K. Anabolism. Low
mechanical signals strengthen long bones. Nature 412 (6847): 603-604 (2001).
65. Klein-Nulend J., van der Plas A., Semeins C. M., Ajubi N. E., Frangos J. A.,
Nijweide P. J., Burger E. H. Sensitivity of osteocytes to biomechanical stress in
vitro. FASEB Journal 9 (5): 441-445 (1995).
66. Bakker A. D., Soejima K., Klein-Nulend J., Burger E. H. The production of nitric
oxide and prostaglandin E2 by primary bone cells is shear stress dependent.
Journal of Biomechanics 34 (5): 671-677 (2001).
67. Riggs C. M., Lanyon L. E., Boyde A. Functional associations between collagen
fiber orientation and locomotor strain direction in cortical bone of the equine
radius. Anatomy and Embryology 187 (3): 231-238 (1993).
68. Ascenzi A., Bonucci E. Tensile properties of single osteons. Anatomical Record
158 (4): 375-386 (1967).
69. Ascenzi A, Bonucci E. The compressive properties of single osteons. Anatomical
Record 161 (3): 377-391 (1968).
70. Burr D. B., Hirano T., Turner C. H., Hotchkiss C., Brommage R., Hock J. M.
Intermittently administered human parathyroid hormone(1-34) treatment
increases intracortical bone turnover and porosity without reducing bone
strength in the humerus of ovariectomized cynomolgus monkeys. Journal of
Bone Mineral Research 16 (1): 157-165 (2001).
71. Wang Y. N., Qin Q. H. Parametric study of control mechanism of cortical bone
remodeling under mechanical stimulus. Acta Mechanica Sinica 26 (1): 37-44 (2010).
Search WWH ::




Custom Search