Cryptography Reference
In-Depth Information
Proof: First we prove item (1). Since v > u, so for any τ > v, we will
have τ > max{u,v}. Substituting τ = v + 1 in Corollary 3.2.10, we have
N−1−v
N −1
N
= p u,v
v+1
P(S N [u] = v)
v
N−1−v
v+1 ) 1
N −1
N
N −1
N
+(1−p u,v
1−
N
N−1−v
N −1
N
= p u,v
v+1
v
N−1
v+1 ) 1
N −1
N
N −1
N
+(1−p u,v
.
N
Now, from Lemma 3.2.7, we get
v−u
v 1
N 2
2v−u−1
1
N
N −1
N
1
N
N −1
N
N −1
N
p u,v
v+1 =
+
,
except for “u = 0 and v = 1”. Also, Lemma 3.2.4 gives
= 2(N −1)
N 2
p 0,1
2
.
Substituting these values of p u,v
v+1 , one can get the result.
Now let us prove item (2). Here we have u≥ v. So for any τ > u, we will
have τ > max{u,v}. Substituting τ = u + 1 in Corollary 3.2.10, we have
N−1−u
N −1
N
= p u,v
u+1
P(S N [u] = v)
1−
v
N−1−u
u+1 ) 1
N −1
N
N −1
N
+(1−p u,v
.
N
As p u,v
1
N (see the proof of Proposition 3.2.6), substi-
tuting this in the above expression, we get
u+1 = P(S u+1 [u] = v) =
N−1−u
1
N
N −1
N
P(S N [u] = v)
=
v
N−1−u
1− 1
N
1
N
N −1
N
N −1
N
+
1−
N−1−u
v+1
1
N
N −1
N
1
N
N −1
N
=
+
N+v−u
1
N
N −1
N
.
Search WWH ::




Custom Search