Cryptography Reference
In-Depth Information
one is 0 and the other two are 1's. Hence,
3
2
1
3
3
1
1
3
2
3
Prob(λ 1
⊕λ 2
⊕λ 3 = 0) ≈
+
13
27 .
=
As in Sections 10.3.1 and 10.3.2, let P[i ⊟ 12] at the i-th step be denoted
by z i and replace P[i mod 512] by s i
⊕h 1 (z i ). Thus, for 1024τ + 20 ≤ i <
1024τ + 510, the event
0
0
20
16
14 = 0
P[i]
P −2 [i]
P[i ⊟ 6]
P[i ⊟ 20]
P −2 [i ⊟ 510]
can be alternatively written as (χ i = H(Z
i )), where
χ i = s i
⊕s i−2048
⊕s 20
i−6
⊕s 16
i−20
⊕s 14
i−2046 and
i ) = h 1 (z i ) 0 ⊕h 1 (z i−2048 ) 0 ⊕h 1 (z i−6 ) 20 ⊕h 1 (z i−20 ) 16 ⊕h 1 (z i−2046 ) 14 .
Here Z
H(Z
i = (z i ,z i−2048 ,z i−6 ,z i−20 ,z i−2046 ) is an 80-bit input and H(.) can
be considered as a random 80-bit-to-1-bit S-box. Note that h 1 (.) and h 1 (.)
indicate two different functions, since they are related to two P arrays at two
different blocks and thus act as two different S-boxes. With this formulation,
Lemma 10.3.6 can be restated as
i )) ≈ 13
Prob((χ i = H(Z
27 .
(10.11)
Further, from Theorem 10.3.1, for 1024τ + 20 ≤j < i < 1024τ + 510,
j )) = 1
2 + 2 −81 .
Prob(H(Z
i ) = H(Z
(10.12)
Theorem 10.3.7. For 1024τ + 20 ≤j < i < 1024τ + 510,
Prob(χ i = χ j ) ≈ 1
1
3 6 2 81 ,
2 +
where χ u = s u
⊕s 1 u−2046 .
Proof: We need to combine the probability expressions of Equa-
tions (10.11) and (10.12). For 1024τ + 20 ≤ j < i < 1024τ + 510,
⊕s u−2048
⊕s 2 u−6
⊕s 1 u−20
Prob(χ i
⊕χ j = H(Z
i )⊕H(Z
j ))
= Prob(χ i = H(Z
i ))Prob(χ j = H(Z
j )) +
Prob(χ i = H(Z
i )⊕1)Prob(χ j = H(Z
j )⊕1)
2
2
13
27
1− 13
27
= 365
+
3 6 .
Search WWH ::




Custom Search