Biomedical Engineering Reference
In-Depth Information
may. rely. on. the. topographical. modiication. of. advanced. materials. that. have. been. fabri-
cated.to.include.a.bioactive.component,.with.an.aim.to.regulate.cellular.adhesion.and.dif-
ferentiation.followed.by.controlled.construct.resorption.
One. important. outcome. of. the. mounting. data. relating. cell. adhesion. to. nanoscale. fea-
tures. is. the. development. of. hierarchial. multiphase. materials. for. a. speciic. regenerative.
application..It.can.be.proposed.that.optimal.tissue.regeneration.can.be.induced.by.selec-
tive.cell.adhesion/activation—an.ideal.that.may.be.achieved.by.the.inclusion.of.discrete.
surface. nanofeatures. on. implantable. materials.. Indeed,. preliminary. studies. have. noted.
that.nanotopographical.features.may.be.employed.to.induce.selective.adhesion.of.endo-
thelial.cells.over.ibroblasts.(Dalby.et.al..2002a;.Csaderova.et.al..2012).
The. fabrication. of. complex. 3D. biomedical. devices. to. include. nanoscale. features,. how-
ever,.is.a.complicated.process.associated.with.low.reproducibility.and.represents.a.major.
challenge. for. the. development. of. next-generation. biomaterials.. However,. sophisticated.
modeling. and. production. methods. of. small. devices,. in. particular. replica. and. injection.
molding,.are.advancing.the.ield.of.nanofabricated.biomaterials..It.follows,.then,.that.new.
technologies. arising. particularly. from. the. microelectronic. and. plastics. industries. will.
indirectly.facilitate.the.production.of.next-generation.biomedical.devices.
The.indings.presented.within.this.chapter.identify.the.cellular.response.to.topographi-
cal.features.in.vitro.and.indicate.that.topographical.modiication.can.be.employed.to.reg-
ulate. adhesion. in. vivo. at. the. cell-device. interface;. furthermore,. the. critical. dimensions.
required.for.integrin.disruption.have.been.outlined..It.follows,.then,.that.topographically.
modiied. devices. may. enhance. the. differential. function. of. endogenous. cellular. popula-
tions,.have.critical.implications.for.tissue.repair,.and.possess.the.potential.for.future.clini-
cal.translation.
References
Abercrombie,. M.,. J.. E.. Heaysman,. and. S.. M.. Pegrum. (1970).. The. locomotion. of. ibroblasts. in. cul-
ture..3..Movements.of.particles.on.the.dorsal.surface.of.the.leading.lamella.. Exp Cell Res . 62 (2):.
389-398.
Abrams,.G..A.,.S..L..Goodman,.P..F..Nealey,.M..Franco,.and.C..J..Murphy.(2000)..Nanoscale.topogra-
phy.of.the.basement.membrane.underlying.the.corneal.epithelium.of.the.rhesus.macaque.. Cell
Tissue Res . 299 (1):.39-46.
Affrosman,. S.,. G.. Henn,. S..A.. O'. Niell,. R..A.. Pethrick,. and. M.. Stamm. (1996).. Surface. topography.
and. composition. of. deuterated. polystyrene-poly(bromostyrene). blends.. Macromolecules . 29 :.
5010-5016.
Andersson,. A.. S.,. F.. Backhed,. A.. von. Euler,. A.. Richter-Dahlfors,. D.. Sutherland,. and. B.. Kasemo.
(2003a).. Nanoscale. features. inluence. epithelial. cell. morphology. and. cytokine. production..
Biomaterials . 24 (20):.3427-3436.
Andersson,.A..S.,.J..Brink,.U..Lidberg,.and.D..S..Sutherland.(2003b)..Inluence.of.systematically.varied.
nanoscale.topography.on.the.morphology.of.epithelial.cells.. IEEE Trans Nanobiosci . 2 (2):.49-57.
Arnold,. M.,. E..A.. Cavalcanti-Adam,. R.. Glass,. J.. Blummel,. W.. Eck,. M.. Kantlehner,. H.. Kessler,. and.
J.. P.. Spatz. (2004).. Activation. of. integrin. function. by. nanopatterned. adhesive. interfaces..
Chemphyschem . 5 (3):.383-388.
Balaban,.N..Q.,.U..S..Schwarz,.D..Riveline,.P..Goichberg,.G..Tzur,.I..Sabanay,.D..Mahalu,.S..Safran,.
A.. Bershadsky,. L..Addadi,. and. B.. Geiger. (2001).. Force. and. focal. adhesion. assembly:.A. close.
relationship.studied.using.elastic.micropatterned.substrates.. Nat Cell Biol . 3 (5):.466-472.
 
Search WWH ::




Custom Search