Biomedical Engineering Reference
In-Depth Information
20
Cellular R esponse to Nanoscale Features
Manus J.P. Biggs, Matthew J. Dalby, and Shalom J. Wind
CONTENTS
20.1. Introduction......................................................................................................................... 461
20.2. Cell.Material.Interactions.................................................................................................. 462
20.3. Focal.Adhesion................................................................................................................... 463
20.4. Nanotopography.and.Focal.Adhesion.Formation......................................................... 465
20.5. Effects.of.Nanoscale.Protrusions.on.Focal.Adhesion.Formation................................ 466
20.6. Effects.of.Nanoscale.Pits.on.Focal.Adhesion.Formation.............................................. 469
20.7. Effects.of.Nanoscale.Grooves.on.Cell.Adhesion............................................................ 471
20.8. Nanotopography.and.Cellular.Function......................................................................... 474
20.9. Conclusions.and.Perspectives.......................................................................................... 477
References..................................................................................................................................... 478
20.1 Introduction
This. chapter. highlights. the. importance. and. development. of. the. physiomechanical. pro-
cesses.that.regulate.early.topographical.interactions.and.the.inluence.of.nanoscale.topo-
graphical. modiication. on. integrin-mediated. cellular. adhesion. and. cellular. function.. As.
small.technology.and.the.ield.of.nanoengineering.advance,.new.possibilities.are.emerg-
ing. in. bioengineering,. medicine,. and. cell. biology.. Single-molecule. systems. can. now. be.
examined.and.replicated.in.vitro..Further,.a.key.tenet.of.medical.device.design.has.evolved.
from.the.exquisite.ability.of.biological.systems.to.respond.to.nanotopographical.features,.
a. process. that. has. led. to. the. development. of. next-generation. biomaterials.. Published. in.
the.journal. Science .are.the.prerequisites.for.third-generation.biomaterials;.not.only.should.
they. support. the. healing. site. (as. irst-generation. biomaterials),. but. they. should. also. be.
bioactive.and.possibly.biodegradable.(as.second-generation.biomaterials).and.they.should.
inluence.cell.behavior.in.a.deined.manner.at.the.molecular.level.(Hench.and.Polak.2002).
An.increased.knowledge.of.the.extracellular.environment,.the.topographical.and.chemi-
cal.cues.present.at.the.cellular.level,.and.how.cells.react.to.these.stimuli.has.resulted.in.the.
development. of. functionalized. surfaces. via. topographical. modiication.. Critically,. these.
have.biomedical.applications.or.are.used.as.tools.to.study.the.processes.of.cell.attachment.
and. subsequent. cellular. function.. Although. microscale. topography. signiicantly. modu-
lates.cellular.behavior.in.vitro,.an.important.consideration.in.biomaterial.physicochemical.
modiication.is.the.observation.that.cells.in.vivo.make.contact.with.nanoscale.as.well.as.
microscale.topographical.features..Also,.whereas.single.cells.are.typically.tens.of.microns.
in. diameter,. the. dimensions. of. subcellular. structures—including. cytoskeletal. elements,.
461
 
 
 
Search WWH ::




Custom Search