Biomedical Engineering Reference
In-Depth Information
125. Kwon YJ, Standley SM, Goh SL et al (2005) Enhanced antigen presentation and immunosti-
mulation of dendritic cells using acid-degradable cationic nanoparticles. J Control Release
105:199-212
126. Sun H, Pollock KG, Brewer JM (2003) Analysis of the role of vaccine adjuvants in
modulating dendritic cell activation and antigen presentation in vitro. Vaccine 21:849-855
127. Waeckerle-Men Y, Allmen EU, Gander B et al (2006) Encapsulation of proteins and peptides
into biodegradable poly(D, L-lactide-co-glycolide) microspheres prolongs and enhances
antigen presentation by human dendritic cells. Vaccine 24:1847-1857
128. Li SD, Huang L (2006) Gene therapy progress and prospects: non-viral gene therapy by
systemic delivery. Gene Ther 13:1313-1319
129. Mann A, Richa R, Ganguli M (2008) DNA condensation by poly-L-lysine at the single
molecule level:
role of DNA concentration and polymer
length. J Control Release
125:252-262
130. Lee PW, Peng SF, Su CJ et al (2008) The use of biodegradable polymeric nanoparticles in
combination with a low-pressure gene gun for transdermal DNA delivery. Biomaterials
29:742-751
131. Peng SF, Yang MJ, Su CJ et al (2009) Effects of incorporation of poly( g -glutamic acid) in
chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency.
Biomaterials 30:1797-1808
132. Kurosaki T, Kitahara T, Fumoto S et al (2009) Ternary complexes of pDNA, polyethy-
lenimine, and gamma-polyglutamic acid for gene delivery systems. Biomaterials
30:2846-2853
133. Plank C, Zauner W, Wagner E (1998) Application of membrane-active peptides for drug and
gene delivery across cellular membranes. Adv Drug Deliv Rev 34:21-35
134. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid
bilayer membranes by a -helical antimicrobial and cell non-selective membrane-lytic
peptides. Biochim Biophys Acta 1462:55-70
135. Yessine MA, Leroux JC (2004) Membrane-destabilizing polyanions: interaction with lipid
bilayers and endosomal escape of biomacromolecules. Adv Drug Deliv Rev 56:999-1021
136. Chen R, Yue Z, Eccleston ME et al (2005) Modulation of cell membrane disruption by pH-
responsive pseudo-peptides through grafting with hydrophilic side chains. J Control Release
108:63-72
137. Murthy N, Xu M, Schuck S et al (2003) A macromolecular delivery vehicle for protein-based
vaccines: Acid-degradable protein-loaded microgels. Proc Natl Acad Sci USA 29:4995-5000
138. Standley SM, Kwon TJ, Murthy N et al (2004) Acid-degradable particles for protein-based
vaccines: Enhanced survival rate for tumor-challenged mice using ovalbumin model.
Bioconjug Chem 15:1281-1288
139. Hu Y, Litwin T, Nagaraja AR et al (2007) Cytosolic delivery of membrane-impermeable
molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett
7:3056-3064
140. Boussif O, Lezoualc'h F, Zanta MA et al (1995) A versatile vector for gene and oligonucleo-
tide transfer into cells in culture and in vivo. Proc Natl Acad Sci USA 92:7297-7301
141. Murthy N, Robichaud JR, Tirrell DA et al (1999) The design and synthesis of polymers for
eukaryotic membrane disruption. J Control Release 61:137-143
142. Jones RA, Cheung CY, Black FE et al (2003) Poly(2-alkylacrylic acid) polymers deliver
molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Biochem J
372:65-75
143. Kusonwiriyawong C, van de Wetering P, Hubbell JA et al (2003) Evaluation of pH-dependent
membrane-disruptive properties of poly(acrylic acid) derived polymers. Eur J Pharm
Biopharm 56:237-246
144. Yessine MA, Meier C, Petereit HU et al (2006) On the role of methacrylic acid copolymers in
the intracellular delivery of antisense oligonucleotides. Eur J Pharm Biopharm 63:1-10
Search WWH ::




Custom Search