Biomedical Engineering Reference
In-Depth Information
84. Erwin WM et al (2009) The regenerative capacity of the notochordal cell: tissue constructs
generated in vitro under hypoxic conditions. J Neurosurg Spine 10(6):513-521
85. Aguiar DJ, Johnson SL, Oegema TR (1999) Notochordal cells interact with nucleus pulposus
cells: regulation of proteoglycan synthesis. Exp Cell Res 246(1):129-137
86. Korecki CL et al (2010) Notochordal cell conditioned medium stimulates mesenchymal stem
cell differentiation toward a young nucleus pulposus phenotype. Stem Cell Res Ther 1(2):18
87. Mercuri J, Gill S, Simionescu A, Simionescu D (2010) Xenogenic cues for human mesen-
chymal stem cell differentiation towads a nucleus pulposus cell-like phenotype. In:
Proceedings 25th Annual Meeting of the North American Spine Society. Spine J 10(9):
S114-S115
88. Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells.
Science 284(5411):143-147
89. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic
immune cell responses. Blood 105(4):1815-1822
90. McIntosh KR et al (2009) Immunogenicity of allogeneic adipose-derived stem cells in a rat
spinal fusion model. Tissue Eng Part A 15(9):2677-2686
91. Steck E et al (2005) Induction of intervertebral disc-like cells from adult mesenchymal stem
cells. Stem Cells 23(3):403-411
92. Risbud M, Izzo M, Adams C et al. (2003) Mesenchymal stem cells respond to their
microenvironment and in vitro to assume nucleus pulposus-like phenotype. Paper presented
at 30th Annual Meeting of the International Society for the Study of the Lumbar Spine.
Vancouver, Canada
93. Richardson SM et al (2006) Intervertebral disc cell-mediated mesenchymal stem cell differ-
entiation. Stem Cells 24(3):707-716
94. Sobajima S et al (2008) Feasibility of a stem cell therapy for intervertebral disc degeneration.
Spine J 8(6):888-896
95. Sakai D et al (2006) Regenerative effects of transplanting mesenchymal stem cells embedded
in atelocollagen to the degenerated intervertebral disc. Biomaterials 27(3):335-345
96. Li X et al (2005) Modulation of chondrocytic properties of fat-derived mesenchymal cells in
co-cultures with nucleus pulposus. Connect Tissue Res 46(2):75-82
97. Lu ZF et al (2007) Differentiation of adipose stem cells by nucleus pulposus cells: configura-
tion effect. Biochem Biophys Res Commun 359(4):991-996
98. Kluba T et al (2005) Human anulus fibrosis and nucleus pulposus cells of the intervertebral
disc: effect of degeneration and culture system on cell phenotype. Spine (Phila Pa 1976) 30
(24):2743-2748
99. Stokes DG et al (2001) Regulation of type-II collagen gene expression during human
chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture
involves Sry-type high-mobility-group box (SOX) transcription factors. Biochem J 360
(Pt 2):461-470
100. Tsai TT et al (2007) Fibroblast growth factor-2 maintains the differentiation potential of
nucleus pulposus cells in vitro: implications for cell-based transplantation therapy. Spine
(Phila Pa 1976) 32(5):495-502
101. Yang SH et al (2005) An in-vitro study on regeneration of human nucleus pulposus by using
gelatin/chondroitin-6-sulfate/hyaluronan tri-copolymer
scaffold. Artif Organs 29(10):
806-814
102. Yang SH et al (2005) Gelatin/chondroitin-6-sulfate copolymer scaffold for culturing human
nucleus pulposus cells in vitro with production of extracellular matrix. J Biomed Mater Res B
Appl Biomater 74(1):488-494
103. Li CQ et al (2009) Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copoly-
mer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-
chemical properties and biocompatibility. J Mater Sci Mater Med 21:741-751
104. Calderon L et al (2010) Type II collagen-hyaluronan hydrogel-a step towards a scaffold for
intervertebral disc tissue engineering. Eur Cell Mater 20:134-148
Search WWH ::




Custom Search