Biomedical Engineering Reference
In-Depth Information
4. Peppas NA, Hilt JZ, Khademhosseini A et al (2006) Hydrogels in biology and medicine: from
molecular principles to bionanotechnology. Adv Mater 18:1345-1360
5. Slaughter BV, Khurshid SS, Fisher OZ et al (2009) Hydrogels in regenerative medicine. Adv
Mater 21:3307-3329
6. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3-12
7. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869-1880
8. Takahashi K, Tanabe K, Yamanaka S et al (2007) Induction of pluripotent stem cells from
adult human fibroblasts by defined factors. Cell 131:861-872
9. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic
and adult fibroblast cultures by defined factors. Cell 126:663-676
10. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse
embryos. Nature 292:154-156
11. Tsang VL, Bhatia N (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev
56:1635-1647
12. Liu C, Xia Z, Czernuszka JT (2007) Design and development of three-dimensional scaffolds
for tissue engineering. Trans IChemE, Part A, Chem Eng Res Des 85:1051-1064
13. Stoop R (2008) Smart biomaterials for tissue engineering of cartilage. Inj Int J Care Injured
3951:577-587
14. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and
applications. Biomaterials 24:4337-4351
15. Peppas NA, Bures P, Leobandung W et al (2000) Hydrogels in pharmaceutical formulations.
Eur J Pharm Biopharm 50:27-46
16. Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering.
Biomaterials 31:4639-4656
17. Van Tomme SR, Storm G, Hennink WE (2008) In situ gelling hydrogels for pharmaceutical
and biomedical applications. Int J Pharm 355:1-18
18. Grinnell F (2003) Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol
13:264-269
19. Tabata Y, Hijikata S, Ikada Y (1994) Enhanced vascularization and tissue granulation by basic
fibroblast growth factor impregnated in gelatin hydrogels. J Control Rel 31:189-199
20. Khademhosseini A, Suh KY, Yang JM et al (2004) Layer-by-layer deposition of hyaluronic
acid and poly- L -lysine for patterned cell co-cultures. Biomaterials 25:3583-3592
21. Watanabe J, Nederberg F, Atthoff B et al (2007) Cytocompatible biointerface on poly(lactic
acid) by enrichment with phosphorylcholine groups for cell engineering. Mater Sci Eng
27:227-231
22. Watanabe J, Eriguchi T, Ishihara K (2002) Stereocomplex formation by enantiomeric poly
(lactic acid) graft-type phospholipid polymers for tissue engineering. Biomacromolecules
3:1109-1114
23. Watanabe J, Eriguchi T, Ishihara K (2002) Cell adhesion and morphology in porous scaffold
based on enantiomeric poly(lactic acid) graft-type phospholipid polymers. Biomacro-
molecules 3:1375-1383
24. Watanabe J, Ishihara K (2005) Cell engineering biointerface focusing on cytocompatibility
using phospholipid polymer with an isomeric oligo(lactic acid) segment. Biomacromolecules
6:1797-1802
25. Watanabe J, Ishihara K (2003) Phosphorylcholine and Poly(D, L-lactic acid) containing
copolymers as substrates for cell adhesion. Artif Organs 27:242-248
26. Jeong B, Choi YK, Bae YH et al (1999) New biodegradable polymers for injectable drug
delivery systems. J Control Release 62:109-114
27. Li Z, Ramay HR, Hauch KD et al (2005) Chitosan-alginate hybrid scaffolds for bone tissue
engineering. Biomaterials 26:3919-3928
28. Ling Y, Rubin J, Deng Y et al (2007) A cell-laden microfluidic hydrogel. Lab Chip 7:756-762
29. Chenite A, Chaput C, Wang D et al (2000) Novel injectable neutral solutions of chitosan form
biodegradable gels in situ. Biomaterials 21:2155-2161
Search WWH ::




Custom Search