Biomedical Engineering Reference
In-Depth Information
60. Michalet, X.,
et al
., Quantum dots for live cells,
in vivo
imaging, and
diagnostics.
Science
, 2005.
307
(5709): pp. 538-544.
61. Gao, X.,
et al
.,
In vivo
cancer targeting and imaging with semiconductor
quantum dots.
Nat Biotechnol
, 2004.
22
(8): pp. 969-976.
62. Medintz, I.L.,
et al
., Quantum dot bioconjugates for imaging, labelling
and sensing.
Nat Mater
, 2005.
4
(6): pp. 435-446.
63. Jiang, G.,
., Target specific intracellular delivery of siRNA/PEI-HA
complex by receptor mediated endocytosis.
et al
Mol Pharm
, 2009.
6
(3):
pp. 727-737.
64. Chen, A.A.,
et al
., Quantum dots to monitor RNAi delivery and improve
(22): p. e190.
65. Cole, A.J., V.C. Yang, and A.E. David, Cancer theranostics: the rise of
targeted magnetic nanoparticles.
gene silencing.
Nucleic Acids Res
, 2005.
33
Trends Biotechnol
, 2011.
29
(7):
pp. 323-332.
66. Medarova, Z.,
et al
.,
In vivo
imaging of siRNA delivery and silencing in
tumors.
Nat Med
, 2007.
13
(3): pp. 372-377.
67. Kumar, M.,
., Image-guided breast tumor therapy using a small
interfering RNA nanodrug.
et al
(19): pp. 7553-7561.
68. Jal, P.K., S. Patel, and B.K. Mishra, Chemical modification of silica surface
by immobilization of functional groups for extractive concentration of
metal ions.
Cancer Res
, 2010.
70
(5): pp. 1005-1028.
69. Slowing, II, B.G. Trewyn, and V.S. Lin, Mesoporous silica nanoparticles
for intracellular delivery of membrane-impermeable proteins.
Talanta
, 2004.
62
J Am
Chem Soc
, 2007.
129
(28): pp. 8845-8849.
70. Kneuer, C.,
., A nonviral DNA delivery system based on surface
modified silica-nanoparticles can efficiently transfect cells
et al
in vitro
.
(6): pp. 926-932.
71. Rosenholm, J.M., C. Sahlgren, and M. Linden, Towards multifunctional,
targeted drug delivery systems using mesoporous silica nanoparticles
— opportunities & challenges.
Bioconjug Chem
, 2000.
11
Nanoscale
, 2010.
2
(10): pp. 1870-1883.
72. Hu-Lieskovan, S.,
., Sequence-specific knockdown of EWS-FLI1
by targeted, nonviral delivery of small interfering RNA inhibits tumor
growth in a murine model of metastatic Ewing's sarcoma.
et al
Cancer Res
,
(19): pp. 8984-8992.
73. Pirollo, K.F.,
2005.
65
., Materializing the potential of small interfering RNA
via a tumor-targeting nanodelivery system.
et al
Cancer Res
, 2007.
67
(7):
pp. 2938-2943.
74. Takahashi, Y.,
., Gene silencing in primary and metastatic tumors
by small interfering RNA delivery in mice: quantitative analysis using
et al
Search WWH ::




Custom Search