Biomedical Engineering Reference
In-Depth Information
nanotube-based 3D networks as scaffolds for cell seeding and growth,
Nano Lett ., 11 , pp. 2233-2236.
14. Daniel, S., Rao, T.P., and Rao, K.S. (2007). A review of DNA functionalized/
grafted carbon nanotubes and their characterization, Sens . Actuators ,
122 , pp. 672-682.
15. Elias, K.L., Price, R.L., and Webster, T.J. (2002). Enhanced functions of
osteoblasts on nanometer diameter carbon ibers, Biomaterials , 23 ,
pp. 3279-3287.
16. Flint, S.H., Brooks, J.D., and Bremer, P.J. (2000). Properties of the
stainless steel substrate, inluencing the adhesion of thermo-resistant
streptococci , J . Food Eng ., 43 , pp. 235-242.
17. Fordtran, J.S., Morawski, S., and Richardson, Ch.T. (1973). In vivo
and in vitro evaluation of liquid antacids, New Engl . J . Med ., 288 ,
pp. 923-928.
18. Gilmore, K.J., Moulton, S.E., and Wallace, G.G. (2007). Incorporation
of Carbon Nanotubes into the Biomedical Polymer Poly(styrene-β-
isobutylene-β-styrene), Carbon , 45 , pp. 402-410.
19. Grabinski, Ch., Hussain, S., Lafdi, K., Braydich-Stolle, L., and Schlager,
J. (2007). Effect of particle dimension on biocompatibility of carbon
nanomaterials, Carbon , 45 , pp. 2828-2835.
20. Guglielmotti, M.B., Renou, S., and Cabrini, R.L. (1999). A histomor-
phometric study of tissue interface by laminar implant test in rats, Int .
J . Oral Maxillofac . Implants , 14 , pp. 565-570.
21. Harrison, B.S., and Atala, A. (2007). Carbon nanotube applications for
tissue engineering, Biomaterials , 28 , pp. 344-353.
22. Hu, H., Ni, Y.C., Montana, V., Haddon, R.C., and Parpura, V. (2004).
Chemically functionalized carbon nanotubes as substrates for
neuronal growth, Nano Lett ., 4 , pp. 507-511.
23. Ignatius, M.J., Sawhney, N., Gupta, A., Thibadeau, B.M., Monteiro, O.R.,
and Brown, I.G. (1998). Bioactive surface coatings for nanoscale
instruments: effects on CNS neurons, J . Biomed . Mater . Res ., 40 ,
pp. 264-274.
24. Ishida, O., Kim, D.-Y., Kuga, S., Nishiyama, Y., and Malcolm Brown, R.
(2004). Microibrillar carbon from native cellulose, Cellulose , 11 ,
pp. 475-480.
25. Ishihara, M., Kosaka, T., Nakamura, T., Tsugawa, K., Hasegawa, M., Kokai,
F., and Koga, Y. (2006). Antibacterial activity of luorine incorporated
DLC ilms, Diamond Relat . Mater ., 15 , pp. 1011-1014.
26. Jakubowski, W., Bartosz, G., Niedzielski, P., Szymanski, W., and
Walkowiak, B. (2004). Nanocrystalline diamond surface is resistant to
bacterial colonization, Diamond Relat . Mater ., 13 , pp. 1761-1763.
 
Search WWH ::




Custom Search