Biomedical Engineering Reference
In-Depth Information
70. Otsuka, K., and Ren, X. (1998). Recent developments in the research of
shape memory alloys, Intermetallics , 7 , pp. 511-528.
71. Park, J., Bauer, S., Von der Mark, K., and Schmuki, P. (2007). Nanosize
and vitality: TiO 2 nanotube diameter directs cell fate, Nano Lett ., 7 ,
pp. 1686-1691.
72. Pelton, A.R., Russel, S.M., and DiCello, J. (2003). The physical metallurgy
of nitinol for medical applications, JOM , 5 , pp. 33-37.
73. Price, R.L., Waid, M.C., Haberstroh, K.M., and Webster, T.J. (2003).
Selective bone cell adhesion on formulations containing carbon
nanoibers, Biomaterials , 24 , pp. 1877-1887.
74. Raja, K.S., Misra, M., and Paramguru, K. (2005). Formation of self-
ordered nano-tubular structure of anodic oxide layer on titanium,
Electrochim . Acta , 51 , pp. 154-165.
75. Raja, K.S., Misra, M., and Paramguru, K. (2005). Deposition of calcium
phosphate coating on nanotubular anodized titanium, Mater . Lett ., 59 ,
pp. 2137-2141.
76. Rohanizadeh, R., Al-Sadeq, M., and LeGeros, R.Z. (2004). Preparation
of different forms of titanium oxide on titanium surface: Effects on
apatite deposition, J . Biomed . Mater . Res ., 71A , pp. 343-352.
77. Sander, M.S., Cote, M.J., Gu, W., Kile, B.M., and Tripp, C.P. (2004). Template-
assisted fabrication of dense, aligned arrays of titania nanotubes
with well-controlled dimensions on substrates, Adv . Mater ., 16 ,
pp. 2052-2057.
78. Seah, K.H.W., Thampuran, R., and Teoh, S.H. (1998). The inluence of
pore morphology on corrosion, Corros . Sci ., 40 , pp. 547-556.
79. Shih, Y.-H., Lin, Ch.-T., Liu, Ch.-M., Chen, Ch.-Ch., Chen, Ch.-S., and Ou,
K.-L. (2007). Effect of nano-titanium hydride on formation of multi-
nanoporous TiO 2 ilm on Ti, Appl . Surf . Sci ., 253 , pp. 3678-3682.
80. Sul, Y.T., Johansson, C.B., Jeong, Y., and Albrektsson, T. (2001). The
electrochemical oxide growth behaviour on titanium in acid and
alkaline electrolytes, Med . Eng . Phys ., 23 , pp. 329-346.
81. Sul, Y.T. (2003). The signiicance of the surface properties of oxidized
titanium to the bone response: special emphasis on potential
biochemical bonding of oxidized titanium implant, Biomaterials , 24 ,
pp. 3893-3907.
82. Supronowicz, P.R., Ajayan, P.M., Ullmann, K., Arulanandam, B.P., Metzger,
D.W., and Bizios, R. (2002). Novel current-conducting composite
substrates for exposing osteoblasts to alternating current stimulation,
J . Biomed . Mater . Res ., 59 , pp. 499-506.
 
Search WWH ::




Custom Search