Biomedical Engineering Reference
In-Depth Information
71. Extrand, C. W., Contact angles and their hysteresis as a measure of liquid-solid adhesion. Lang-
muir, 20 (2004) 4017-4021.
72. Marmur, A., Equilibrium contact angles: theory and experiment. Colloids Surf. A, 116(1/2)
(1996) 55-61.
73. Marmur, A., Contact angle hysteresis on heterogeneous smooth surfaces: theoretical comparison
of the captive bubble and drop methods. Colloids and Surfaces A: Phys. and Eng. Aspects, 136
(1998) 209-215.
74. Wolansky, G. and Marmur, A., The actual contact angle on a heterogeneous rough surface in
three dimensions. Langmuir, 14 (1998) 5292-5297.
75. Marmur, A., Line tension effect on contact angles: axisymmetric and cylindrical systems with
rough or heterogeneous solid surface. Colloids and Surfaces A: Phys. and Eng. Aspects, 136
(1998) 81-88.
76. Apel-Paz, M. and Marmur, A., Spreading of liquids on rough surfaces. Colloids and Surfaces A:
Phys. and Eng. Aspects, 146 (1999) 273-279.
77. Marmur, A. and Krasovitski, B., Line tension on curved surfaces: liquid drops on solid micro
and nanospheres. Langmuir, 18 (2002) 8919-8923.
78. Marmur, A., Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir,
19 (2003) 8343-8348.
79. Drelich, J. and Yu., W., Charge heterogeneity of surfaces: mapping and effects on surface forces.
Advances in Colloid and Interface Science, 165(2) (2011) 91-101.
80. Tavana, H., Jehnichen, D., Grundke, K., Hair, M. L. and Neumann, A. W., Contact angle hys-
teresis on fluoropolymer surfaces. Advances in Colloid and Interface Science, 134/135 (2007)
236-248.
81. Chau, T. T., A review of techniques for measurement of contact angles and their applicability on
mineral surfaces. Minerals Engineering, 22 (2009) 213-219.
82. Ramos, S. M. M. and Charlaix, E., Wetting on nanorough surface. Physical Review E, 67 (2003)
031604.
83. Ramos, S. M. M., Charlaix, E. and Benyagoub, A., Contact angle hysteresis on nano-structured
surfaces. Surface Science, 540 (2003) 355-362.
84. Ramos-Canut, S., Wetting properties of nano-structured surfaces. Nuclear Instruments and Meth-
ods in Physics Research B, 245 (2006) 322-326.
85. Daniel, S. and Chaudhury, M. K., Rectified motion of liquid drops on gradient surfaces induced
by vibrations. Langmuir, 18 (2002) 3404-3407.
86. Daniel, S., Sircar, S., Gliem, J. and Chaudhury, M. K., Ratcheting motion of liquid drops on
gradient surfaces. Langmuir, 20 (2004) 4085-4092.
87. He, B., Patankar, N. A. and Lee, J., Multiple equilibrium droplet shapes and design criterion for
rough hydrophobic surfaces. Langmuir, 19 (2003) 4999-5003.
88. Patankar, N. A., On the modeling of hydrophobic contact angles on rough surfaces. Langmuir,
19 (2003) 1249-1253.
89. Patankar, N. A., Transition between superhydrophobic states on rough surfaces. Langmuir, 20
(2004) 7097-7102.
90. Patankar, N. A., Mimicking the lotus effect: influence of double roughness structures and slender
pillars. Langmuir, 20 (2004) 8209-8213.
91. Marmur, A., The lotus effect: superhydrophobicity and metastability. Langmuir, 20 (2004) 3517-
3519.
92. Ferrari, M. and Ravera, F., Surfactants and wetting at superhydrophobic surfaces: water solutions
and nonaqueous liquids. Advances in Colloid and Interface Science, 161 (2010) 22-28.
Search WWH ::




Custom Search