Biomedical Engineering Reference
In-Depth Information
47. Kim, J. H., Shi, W. and Larson, R. G., Methods of stretching DNA molecules using flow fields.
Langmuir, 23 (2007) 755-764.
48. Rein, M., Interactions between drops and hot surfaces, in: M. Rein (Ed.), Drop-Surface Interac-
tions, CISM Courses and Lectures, vol. 456, Chap. 6. Springer, Wien, New York (2003).
49. Wachters, L. H. J. and Westerling, N. A. J., The heat transfer from a hot wall to impinging water
drops in the spheroidal state. Chem. Eng. Sci., 21 (1966) 1047-1056.
50. Naber, J. D. and Farrell, P. V., Hydrodynamics of droplet impingement on a heated surface. SAE,
930919 (1993) 1-16.
51. Inada, S. and Yang, W.-J., Mechanism of miniaturization of sessile drops on heated surfaces. Int.
J. Heat Mass Transfer, 36 (1993) 1505-1515.
52. Leidenfrost, J. G., De aquae communis nonullis qualitatibus tractatus—On the fixation of water
in divers fire. A tract about some qualities of common water. Int. J. Heat Mass Trans., 9 (1966)
1153-1166.
53. Wang, A.-B., Lin, C.-H. and Chen, C.-C., The critical temperature of dry impact for tiny droplet
impinging on a heated surface. Phys of Fluids, 12 (2000) 1622-1625.
54. Yao, S. C. and Cai, K. Y., The dynamics and leidenfrost temperature of drops impacting on a hot
surface at small angles. Experimental Thermal and Fluid Sci., 1 (1988) 363-371.
55. Bertola, V., Drop impact on a hot surface: effect of a polymer additive. Experiments in Fluids, 37
(2004) 653-664.
56. Bertola, V. and Sefiane, K., Controlling secondary atomization during drop impact on hot surfaces
by polymer additives. Physics of Fluids, 17 (2005) 108104.
57. Eggers, J., Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys., 69 (1997)
865-929.
58. Hartnett, J. P. and Hu, R. Y. Z., Role of rheology in boiling studies of viscoelastic liquids. Int.
Commun. Heat Mass Transfer, 13 (1986) 627-637.
59. Ki, Y. M., Kang, S. L. and Kwak, H. Y., Bubble nucleation and growth in polymer solutions.
Polym. Eng. Sci., 44 (2004) 1890-1899.
60. Bernardin, J. D. and Mudawar, I., The Leidenfrost point: experimental study and assessment of
existing models. ASME Journal of Heat Transfer, 121 (1999) 894-903.
61. Bertola, V., Viscoelastic Leidenfrost drops, in: Proc. 22nd European Conference on Liquid Atom-
ization and Spray Systems, Como, Italy, 8-10 September, 2008.
62. Clanet, C., Béguin, C., Richard, D. and Quéré, D., Maximal deformation of and impacting drop.
J. Fluid Mech., 517 (2004) 199-2008.
63. Biance, A.-L., Chevy, F., Clanet, C., Lagubeau, G. and Quéré, D., On the elasticity of an inertial
liquid shock. J. Fluid Mech., 554 (2006) 47-66.
64. Frith, W. J., d'Haene, P. and Buscall, R., Shear thickening in model suspensions of sterically
stabilized particles. J. Rheol., 40 (1996) 531-548.
65. Cross, M. M., Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems.
J. Colloid Sci., 20 (1965) 417-437.
66. Carreau, P. J., Ph.D. Thesis, University of Wisconsin, Madison, 1968.
67. Bingham, E. C., An investigation of the laws of plastic flow. U.S. Bur. of Standards Bull., 13
(1916) 309-353.
68. Herschel, W. H. and Bulkley, R., Konsistenzmessungen von Gummi-Benzol-Lösungen. Kolloid
Z., 39 (1926) 291-300.
69. Casson, N., in: C. C. Mill (Ed.), Rheology of Disperse Systems, Chap. 5. Pergamon, London
(1959).
70. Papanastasiou, T. C., Flows of materials with yield. Journal of Rheology, 31 (1987) 385-404.
Search WWH ::




Custom Search