Biomedical Engineering Reference
In-Depth Information
approach to model the evaporation of heated droplets. Some hybrid approaches
combining CFD and molecular dynamics could be tested but it is still too early to
conclude about the success of such approaches. Three dimensional description of
the phenomenon is also essential to capture some of the experimental observations.
This is still not achieved in the current numerical models due to too demanding
CPU efforts.
At this stage, our conclusion is that there is still much to be done in order to
develop satisfactory numerical models capable of accurately describing the phe-
nomenon of wetting and evaporation of sessile droplets. This chapter points to some
of the improvements to be made and some of the tasks to be undertaken in order to
make a step further towards this goal.
G. References
1. Sefiane, K., Wilson, S. K., David, S., Duffy, B. R. and Dunn, G., Physics of Fluids, 21(6) (2009)
062101.
2. Buffone, C., Sefiane, K. and Easson, W., Physical Review E, 71 (2005) 056302.
3. Sefiane, K., David, S. and Shanahan, M. E. R., Journal of Physical Chemistry B, 112(36) (2008)
11317.
4. Sefiane, K. and Bennacer, R., Journal of Fluid Mechanics, 667 (2011) 260.
5. Girard, F., Antoni, M. and Sefiane, K., Langmuir, 26(7) (2010) 4576.
6. Hu, H. and Larson, R. G., J. Phys. Chem. B, 110 (2006) 7090.
7. Popov, Y. O., Phys. Rev. E, 71 (2005) 036313.
8. Birdi, K. S., Vu, D. T. and Winter, A., J. Phys. Chem., 93 (1989) 3702.
9. Sefiane, K. and Petrol, J., Sci. Eng., 51 (2006) 238.
10. Rowan, S. M. et al., J. Phys. Chem. B, 104 (2000) 8217.
11. Popov, Y. O. and Witten, T. A., Phys. Rev. E, 68 (2003) 036306.
12. Jing, J. P. et al., Proc. Natl. Acad. Sci., 95 (1998) 8046.
13. Gonuguntla, M. and Sharma, A., Langmuir, 20 (2004) 3456.
14. Norris, D. J., Arlinghaus, E. G., Meng, L. L., Heiny, R. and Scriven, L. E., Adv. Mater., 16 (2004)
1393.
15. Kawase, T., Sirringhaus, H., Friend, R. H. and Shimoda, T., Adv. Mater., 13 (2001) 1601.
16. Fang, G. and Ward, C. A., Phys. Rev. E, 59(1) (1999) 417.
17. Lorenz, J. and Mickic, B., ASME J. Heat Transfer, 93 (1970) 46.
18. Incropera, F. P. and DeWitt, D. P., Fundamentals of Heat and Mass Transfer. John Wiley and Sons,
New York, 1990.
19. Shanahan, M. E. R., Langmuir, 18 (2002) 7763.
20. Girard, F., Antoni, M., Faure, S. and Steinchen, A., Microgravity Sci. Tec., 18(3/4) (2006) 42.
21. Cachile, M., Benichou, O. and Cazabat, A. M., Langmuir, 18 (2002) 7985.
22. Sefiane, K., Tadrist, L. and Douglas, M., Int. J. Heat Mass Transfer, 46 (2003) 4527.
23. Erbil, H. Y. and Meric, R. A., J. Phys. Chem. B, 101 (1997) 6867.
24. Cachile, M., Benichou, O., Poulard, C. and Cazabat, A. M., Langmuir, 18 (2002) 8070.
25. Girard, F., Antoni, M. and Sefiane, K., Langmuir, 24(17) (2008) 9207.
26. Girard, F., Antoni, M., Faure, S. and Steinchen, A., Langmuir, 22(26) (2006) 11085.
27. Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S. and Sefiane, K., Colloids and Surfaces A,
323(1-3) (2008) 50.
Search WWH ::




Custom Search