Biomedical Engineering Reference
In-Depth Information
74. Guo J, Padilla RJ, Wallace A, DeKoK IJ, Cooper LF (2007) The effect of hydrofluoric acid
treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in
vitro and in vivo. Biomaterials 28(36):5418-5425
75. Schneider GB, Zaharias R, Seabold D, Keller J, Stanford C (2004) Differentiation of
preosteoblasts is affected by implant surface microtopographies. J Biomed Mater Res A
69(3):462-468
76. Verrier S, Peroglio M, Voisard C, Lechmann B, Alini M (2011) The osteogenic differentiation
of human osteoprogenitor cells on anodic-plasma-chemical treated Ti6Al7Nb. Biomaterials
32(3):672-680
77. Hayakawa T, Yoshinari M, Nemoto K, Wolke JG, Jansen JA (2000) Effect of surface
roughness and calcium phosphate coating on the implant/bone response. Clin Oral Implants
Res 11(4):296-304
78. Pearce AI, Pearce SG, Schwieger K, Milz S, Schneider E, Archer CW, Richards RG (2008)
Effect of surface topography on removal of cortical bone screws in a novel sheep model.
J Orthop Res 26(10):1377-1383
79. Welton JL (2007) Master thesis: in vivo evaluation of defined polished surfaces to prevent
soft tissue adhesion. AO Research Institute, Davos
80. Hayes JS, Seidenglanz U, Pearce AI, Pearce SG, Archer CW, Richards RG (2010) Surface
polishing positively influences ease of plate and screw removal. Eur Cell Mater 19:117-126
81. Hayes JS, Vos DI, Hahn J, Pearce SG, Richards RG (2009) An in vivo evaluation of surface
polishing of TAN intramedullary nails for ease of removal. Eur Cell Mater 18:15-26
82. Boyan BD, Schwartz Z (1999) Modulation of osteogenesis via implant surface design.
In: Davies JE (ed) Bone engineering. EM Squared, Toronto, pp 232-239
83. Brunette DM (1988) The effects of implant surface topography on the behavior of cells. Int J
Oral Maxillofac Implants 3(4):231-246
84. Lossdorfer S, Schwartz Z, Wang L, Lohmann CH, Turner JD, Wieland M, Cochran DL,
Boyan BD (2004) Microrough implant surface topographies increase osteogenesis by
reducing osteoclast formation and activity. J Biomed Mater Res A 70(3):361-369
85. Dalby MJ, Gadegaard N, Curtis AS, Oreffo RO (2007) Nanotopographical control of human
osteoprogenitor differentiation. Curr Stem Cell Res Ther 2(2):129-138
86. Sjöström T, Dalby MJ, Hart A, Tare R, Oreffo RO, Su B (2009) Fabrication of pillar-like
titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta
Biomater 5(5):1433-1441
87. Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S (2009) Titanium dioxide
nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92(3):1218-1224
88. Meirelles L, Currie F, Jacobsson M, Albrektsson T, Wennerberg A (2008) The effect of
chemical and nanotopographical modifications on the early stages of osseointegration. Int J
Oral Maxillofac Implants 23(4):641-647
89. Dalby MJ (2005) Topographically induced direct cell mechanotransduction. Med Eng Phys
27(9):730-742
90. Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern
the cytoskeleton. J Cell Sci 104:613-627
91. Forgacs G (1995) On the possible role of cytoskeletal filamentous networks in intracellular
signalling: an approach based on percolation. J Cell Sci 108(6):2131-2143
92. Ingber DE (2003) Tensegrity I cell structure and hierarchical systems biology. J Cell Sci
116:1157-1173
93. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections
between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure.
Proc Natl Acad Sci USA 4 94(3):849-854
94. Dahl KN, Kahn SM, Wilson KL, Discher DE (2004) The nuclear envelope lamina network
has elasticity and a compressibility limit suggestive of a molecular shock absorber. J Cell
Sci 117:4779-4786
Search WWH ::




Custom Search