Biomedical Engineering Reference
In-Depth Information
23. Luo W, Jones SR, Yousaf MN (2008) Geometric control of stem cell differentiation rate on
surfaces. Langmuir 24(21):12129-12133
24. Roosa SMM et al (2010) The pore size of polycaprolactone scaffolds has limited influence
on bone regeneration in an in vivo model. J Biomed Mater Res Part A 92A(1):359-368
25. Tsuruga E et al (1997) Pore size of porous hydroxyapatite as the cell-substratum controls
BMP-induced osteogenesis. J Biochem 121(2):317-324
26. Shor L et al (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue
scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28(35):5291-5297
27. Hulbert SF et al (1970) Potential of ceramic materials as permanently implantable skeletal
prostheses. J Biomed Mater Res 4:433-456
28. Karageorgiou V, Kaplan D (2005) Porosity of 3D biornaterial scaffolds and osteogenesis.
Biomaterials 26(27):5474-5491
29. Kasten P et al (2008) Porosity and pore size of beta-tricalcium phosphate scaffold can
influence protein production and osteogenic differentiation of human mesenchymal stem
cells: an in vitro and in vivo study. Acta Biomater 4(6):1904-1915
30. Yannas I (1992) Tissue regeneration by use of collagen-glycosaminoglycan copolymers.
Clin Mater 9:179-187
31. Khoda AKMB, Ozbolat IT, Koc B (2011) Engineered tissue scaffolds with variational
porous architecture. J Biomech Eng Trans ASME 133(1):011001-011012
32. Oh SH et al (2010) Investigation of pore size effect on chondrogenic differentiation of
adipose stem cells using a pore size gradient scaffold. Biomacromolecules 11(8):1948-1955
33. Kuboki Y, Jin QM, Takita H (2001) Geometry of carriers controlling phenotypic expression
in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am 83A:S105-S115
34. Cyster LA et al (2005) The influence of dispersant concentration on the pore morphology of
hydroxyapatite ceramics for bone tissue engineering. Biomaterials 26(7):697-702
35. Bone structure. http://www.engin.umich.edu/class/bme456/bonestructure/bonestructure.htm .
Accessed 15 Mar 2011
36. Grimm
MJ,
Williams
JL
(1997)
Measurements
of
permeability
in
human
calcaneal
trabecular bone. J Biomech 30(7):743-745
37. Benninghoff D, Drenckhahn D (eds) ( 2003) Anatomie, 16th edn. Fischer, Munich
38. Hakulinen
MA
et
al
(2006)
Ultrasonic
characterization
of
human
trabecular
bone
microstructure. Phys Med Biol 51(6):1633-1648
39. Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate
flexibility. Proc Natl Acad Sci USA 94(25):13661-13665
40. Ni Y, Chiang MYM (2007) Cell morphology and migration linked to substrate rigidity. Soft
Matter 3(10):1285-1292
41. Schneider A et al (2006) Polyelectrolyte multilayers with a tunable young's modulus:
influence of film stiffness on cell adhesion. Langmuir 22(3):1193-1200
42. Yeung T et al (2005) Effects of substrate stiffness on cell morphology, cytoskeletal
structure, and adhesion. Cell Motil Cytoskelet 60(1):24-34
43. McBeath R et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell
lineage commitment. Dev Cell 6(4):483-495
44. Wang HB, Dembo M, Wang YL (2000) Substrate flexibility regulates growth and apoptosis
of normal but not transformed cells. Am J Physiol Cell Physiol 279(5):C1345-C1350
45. Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell
126(4):677-689
46. Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic
differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J
Physiol Cell Physiol 295(4):C1037-C1044
47. Wang LS
et al (2010)
The
role
of stiffness
of gelatin-hydroxyphenylpropionic
acid
hydrogels
formed
by
enzyme-mediated
crosslinking
on
the
differentiation
of
human
mesenchymal stem cell. Biomaterials 31(33):8608-8616
48. Wan YQ et al (2005) Adhesion and proliferation of OCT-1 osteoblast-like cells on micro-
and nano-scale topography structured poly(L-lactide). Biomaterials 26(21):4453-4459
Search WWH ::




Custom Search