Biomedical Engineering Reference
In-Depth Information
166. Pye DA, Vives RR, Turnbulli JE, Hyde P, Gallagher JT (1998) Heparan sulfate
oligosaccharides require 6-O-sulfation for promotion of basic fibroblast growth factor
mitogenic activity. J Biol Chem 273:22936-22942
167. Raman R, Sasisekharan V, Sasisekharan R (2005) Structural insights into biological roles of
protein-glycosaminoglycan interactions. Chem Biol 12:267-277
168. Forsten-Williams K, Chua CC, Nugent MA (2005) The kinetics of FGF-2 binding to
heparan sulfate proteoglycans and MAP kinase signaling. J Theor Biol 233:483-499
169. Jakobsson L, Kreuger J, Holmborn K et al (2006) Heparan sulfate in trans potentiates
VEGFR-mediated angiogenesis. Dev Cell 10:625-634
170. Benoit DS, Anseth KS (2005) Heparin functionalized PEG gels that modulate protein
adsorption for hMSC adhesion and differentiation. Acta Biomater 1:461-470
171. Benoit DS, Collins SD, Anseth KS (2007) Multifunctional hydrogels that promote
osteogenic hMSC differentiation through stimulation and sequestering of BMP2. Adv Funct
Mater 17:2085-2093
172. Willerth SM, Rader A, Sakiyama-Elbert SE (2008) The effect of controlled growth factor
delivery on embryonic stem cell differentiation inside fibrin scaffolds. Stem Cell Res
1:205-218
173. Webber MJ, Han X, Murthy SN et al (2010) Capturing the stem cell paracrine effect using
heparin-presenting nanofibres to treat cardiovascular diseases. J Tissue Eng Regen Med
4:600-610
174. Oschatz C, Maas C, Lecher B et al (2011) Mast cells increase vascular permeability by
heparin-initiated bradykinin formation in vivo. Immunity 34:258-268
175. Kloxin AM, Tibbitt MW, Anseth KS (2010) Synthesis of photodegradable hydrogels as
dynamically tunable cell culture platforms. Nat Protoc 5:1867-1887
176. Guo WH, Frey MT, Burnham NA, Wang YL (2006) Substrate rigidity regulates the
formation and maintenance of tissues. Biophys J 90:2213-2220
177. Engler AJ, Griffin MA, Sen S et al (2004) Myotubes differentiate optimally on substrates
with tissue-like stiffness: pathological implications for soft or stiff microenvironments.
J Cell Biol 166:877-887
178. Boontheekul T, Hill EE, Kong HJ, Mooney DJ (2007) Regulating myoblast phenotype
through controlled gel stiffness and degradation. Tissue Eng 13:1431-1442
179. Collin O, Tracqui P, Stephanou A et al (2006) Spatiotemporal dynamics of actin-rich
adhesion microdomains: influence of substrate flexibility. J Cell Sci 119:1914-1925
180. Engler AJ, Carag-Krieger C, Johnson CP et al (2008) Embryonic cardiomyocytes
beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell
Sci 121:3794-3802
181. Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity-driven growth and
migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci
USA 104:8281-8286
182. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of
their substrate. Science 310:1139-1143
183. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape,
cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483-495
184. Ruiz
SA,
Chen
CS
(2008)
Emergence
of
patterned
stem
cell
differentiation
within
multicellular structures. Stem Cells 26:2921-2927
185. Karp JM, Yeh J, Eng G et al (2007) Controlling size, shape and homogeneity of embryoid
bodies using poly(ethylene glycol) microwells. Lab Chip 7:786-794
186. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell
lineage specification. Cell 126:677-689
187. Huebsch N, Arany PR, Mao AS et al (2010) Harnessing traction-mediated manipulation of
the cell/matrix interface to control stem-cell fate. Nat Mater 9:518-526
188. Tse JR, Engler AJ () Stiffness gradients mimicking in vivo tissue variation regulate
mesenchymal stem cell fate. PLoS One 6:e15978
Search WWH ::




Custom Search