Biomedical Engineering Reference
In-Depth Information
124. Zhang X, Fu H, Liu X, Yao A, Wang D et al (2009) In vitro bioactivity and
cytocompatibility of porous scaffolds of bioactive borosilicate glasses. Chin Sci Bull
54:3181-3186
125. O'Flaherty EJ (1991) Physiologically based models for bone-seeking elements : I. Rat
skeletal and bone growth. Toxicol Appl Pharmacol 111:299-312
126. O'Flaherty EJ (1991) Physiologically based models for bone-seeking elements : III. Human
skeletal and bone growth. Toxicol Appl Pharmacol 111:332-341
127. Wo´niak P, El Haj AJ (2007) Bone regeneration and repair using tissue engineering. In:
Boccaccini AR, Gough JE (eds) Tissue engineering using ceramics and polymers, 1st edn.
Woodhead Publishing Limited CRC Press, Cambridge, pp 294-318
128. Gerhardt LC, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone
tissue engineering. Materials 3:3867-3910
129. Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38:377-399
130. Jacobs CR (1994) Numerical simulation of bone adaptation to mechanical loading, Ph.D.
Dissertation, Stanford University, California
131. Diego RB, Estelles JM, Sanz JA, Garcia-Aznar JM, Sanchez MS (2007) Polymer scaffolds
with interconnected spherical pores and controlled architecture for tissue engineering:
fabrication, mechanical properties, and finite element modeling. J Mater Res Part B Appl
Biomater 81:448-455
132. Sanz-Herrera JA, Garcia-Aznar JM, Doblare M (2008) A mathematical model for bone
tissue
regeneration
inside
a
specific
type
of
scaffold.
Biomech
Model
Mechanobiol
7:355-366
133. Müller R (2003) Bone microarchitecture assessment: current and future trends. Osteoporosis
Int 5(Suppl 14):S89-S95
134. Müller R, Bosch T, Jarak D, Stauber M, Nazarian A, et al (2002) Micro-mechanical
evaluation of bone microstructures under load. In: Bonse U (ed) Developments in X-Ray
tomography III, pp 189-200
135. Beaupied H, Lespessailles E, Benhamou CL (2007) Evaluation of macrostructural bone
biomechanics. Joint Bone Spine 74:233-239
136. Vrouwenvelder WC, Groot CG, Groot K (1995) Preliminary ageing study of bioactive glass
in a cell culture model. J Mater Sci Mater Med 6:144-149
137. Wang S, Falk MM, Rashad A, Saad MM, Marques AC, et al (2011) Evaluation of 3D nano-
macro porous bioactive glass scaffold for hard tissue engineering. J Mater Sci Mater Med
22:1195-1203
138. Fu Q, Ramahan MN, Bal BS, Kuroki K, Brown RF (2010) In vivo evaluation of 13-93
bioactive glass scaffolds with trabecular and oriented microstructures in a subcutaneous rat
implantation model. Biomed Mater Res A 95A:235-244
139. Navarro M, Aparicio C, Charles-Harris M, Ginebra MP, Engel E et al (2006) Development
of
a
biodegradable
composite
scaffold
for
bone
tissue
engineering:
physicochemical
topographical,
mechanical,
degradation,
and
biological
properties.
Ordered
polymeric
nanostructures at surfaces. Springer, Berlin, pp 209-231
140. Yunos DM, Bretcanu O, Boccaccini AR (2008) Polymer-bioceramic composites for tissue
engineering scaffolds. J Mater Sci 43:4433-4442
141. Sanz-Herrera JA, Doblaré M, García-Aznar JM (2010) Scaffold microarchitecture
determines internal bone directional growth structure: a numerical study. J Biomech
43:2480-2486
142. Matthews FL, Rawlings RD (eds) (1994) Composite materials: engineering and science,
Woodhead Publishing Limited, CRC Press, Cambridge
143. Blaker JJ, Bismarck A, Boccaccini AR, Young AM, Nazhat SN (2010) Premature
degradation of poly(a-hydroxyesters) during thermal processing of Bioglass -containing
composites. Acta Biomater 6:756-762
144. Blaker JJ, Maquet V, Jerome R, Boccaccini AR, Nazhat SN (2005) Mechanical properties
of
PDLLA/Bioglass composite
highly
porous
foams
as
scaffolds
for
bone
tissue
engineering. Acta Biomater 1:643-652
Search WWH ::




Custom Search