Biomedical Engineering Reference
In-Depth Information
101. Chen
QZ,
Rezwan
K,
Francon
V,
Armitage
D,
Nazhat
SN
et
al
(2007)
Surface
functionalization of Bioglass -derived porous scaffolds. Acta Biomater 3:551-562
102. Vitale-Brovarone C, Baino F, Verne E (2010) Feasibility and tailoring of bioactive glass-
ceramic scaffolds with gradient of porosity for bone grafting. J Biomater Appl 24:693-712
103. Vargas GE, Mesones RV, Bretcanu O, López JMP, Boccaccini AR et al (2009)
Biocompatibility and bone mineralization potential of 45S5 Bioglass -derived glass-
ceramic scaffolds in chick embryos. Acta Biomater 5:374-380
104. Nandi SK, Kundu B, Datta S, De DK, Basu D (2009) The repair of segmental bone defects
with porous bioglass: an experimental study in goat. Res Vet Sci 86:162-173
105. Mahmood J, Takita H, Ojima Y, Kobayashi M, Kohgo T et al (2001) Geometric effect of
matrix upon cell differentiation: BMP-induced osteogenesis using a new bioglass with a
feasible structure. J Biochem 129:163-171
106. Mantsos T, Chatzistavrou X, Roether JA, Hupa L, Arstila H et al (2009) Non-crystalline composite
tissue engineering scaffolds using boron-containing bioactive glass and poly( D , L -lactic acid)
coatings. Biomed Mater 4:55002
107. San Miguel B, Kriauciunas R, Tosatti S, Ehrbar M, Ghayor C et al (2010) Enhanced
osteoblastic activity and bone regeneration using surface-modified porous bioactive glass
scaffolds. J Biomed Mater Res A 94A:1023-1033
108. Fu Q, Saiz E, Tomsio AP (2011) Bioinspired strong and highly porous glass scaffolds.
Adv Funct Mater 21
109. Thompson ID (2005) Biocomposites. In: Hench LL, Jones JR (eds) Biomaterials, artificial
organs
and
tissue
engineering,
1st
edn.
Woodhead
Publishing
Limited
CRC
Press,
Cambridge, pp 48-58
110. Kanczler
JM,
Oreffo
RO
(2008)
Osteogenesis
and
angiogenesis:
the
potential
for
engineering bone. Eur Cells Mater 15:100-114
111. Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex
composites. Science 311:515-518
112. Mallik KK (2008) Freeze Casting of Porous Bioactive Glass and Bioceramics. J Am Ceram
Soc 92:S85-S94
113. Vitale-Brovarone C, Baino F, Verné E (2009) High strength bioactive glass-ceramic
scaffolds for bone regeneration. J Mater Sci Mater Med 20:643-653
114. Hernandez CJ, Beaupre GS, Keller TS, Carter DR (2001) The influence of bone volume
fraction and ash fraction on bone strength and modulus. Bone 29:74-78
115. Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone.
Annu Rev Biomed Eng 3:307-333
116. Sun SS, Ma HL, Liu CL, Huang CH, Cheng CK et al (2008) Difference in femoral head and
neck material properties between osteoarthritis and osteoporosis. Clin Biomech 1(Suppl
23):S39-S47
117. Nazarian A, von Stechow D, Zurakowski D, Muller R, Snyder BD (2008) Bone volume
fraction explains the variation in strength and stiffness of cancellous bone affected by
metastatic cancer and osteoporosis. Calcif Tissue Int 83:368-379
118. Hench LL, Wilson J (1993) Introduction. In: Hench LL, Wilson J (eds) An introduction to
bioceramics, 1st edn. World Scientific Publishing, Singapore, pp 1-24
119. Clupper DC, Gough JE, Embanga PM, Notingher I, Hench LL et al (2004) Bioactive
evaluation of 45S5 bioactive glass fibres and preliminary study of human osteoblast
attachment. J Mater Sci Mater Med 15:803-838
120. Clupper DC, Hench LL, Mecholsky JJ (2004) Strength and toughness of tape cast bioactive
glass 45S5 following heat treatment. J Eur Ceram Soc J 24:2929-2934
121. Frost HM (1998) Could some biomechanical effects of growth hormone help to explain its
effects on bone formation and resorption? Bone 23:395-398
122. Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: Structure and
mechanical properties. Prog Mater Sci 53:1-206
123. Webster TJ, Ahn ES (2007) Nanostructured biomaterials for tissue engineering bone tissue
engineering II. Springer, Berlin, pp 275-308
Search WWH ::




Custom Search