Biomedical Engineering Reference
In-Depth Information
81. Jones JR (2009) New trends in bioactive scaffolds: the importance of nanostructure. J Eur
Ceram Soc 29:1275-1281
82. Ravarian R, Moztarzadeh F, Hashjin MS, Rabiee SM, Khoshakhlagh P et al (2010)
Synthesis,
characterization
and
bioactivity
investigation
of
bioglass/hydroxyapatite
composite. Ceram Int 36:291-297
83. Mansur HS, Costa HS (2008) Nanostructured poly(vinyl alcohol)/bioactive glass and
poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications.
J Chem Eng 137:72-83
84. Mishra R, Basu B, Kumar A (2009) Physical and cytocompatibility properties of bioactive
glass-polyvinyl
alcohol-sodium
alginate
biocomposite
foams
prepared
via
sol-gel
processing for trabecular bone regeneration. J Mater Sci Mater Med 20:2493-2500
85. Hong Z, Reis RL, Mano JF (2008) Preparation and in vitro characterization of scaffolds of
poly(l-lactic
acid)
containing
bioactive
glass
ceramic
nanoparticles.
Acta
Biomater
4:1297-1306
86. Peter M, Sudheesh Kumar PT, Binulal NS, Nair SV, Tamura H et al (2009) Development of
novel a-chitin/nanobioactive glass ceramic composite scaffolds for tissue engineering
applications. Carbohydr Polym 78:926-931
87. El-Kady AM, Ali AF, Farag MM (2010) Development, characterization, and in vitro
bioactivity studies of sol-gel bioactive glass/poly(l-lactide) nanocomposite scaffolds. Mater
Sci Eng C 30:120-131
88. Xie E, Hu Y, Chen X, Bai X, Li D et al (2008) In vivo bone regeneration using a novel
porous bioactive composite. Appl Surf Sci 255:545-547
89. Renghini C, Komlev V, Fiori F, Verne E, Baino F et al (2009) Micro-CT studies on 3-D
bioactive glass-ceramic scaffolds for bone regeneration. Acta Biomater 5:1328-1337
90. Moimas L, Biasotto M, Di Lenarda R, Olivo A, Schmid C (2006) Rabbit pilot study on the
resorbability of three-dimensional bioactive glass fibre scaffolds. Acta Biomater 2:191-199
91. Baino F, Verné E, Vitale-Brovarone C (2009) 3-D high-strength glass-ceramic scaffolds
containing fluoroapatite for load-bearing bone portions replacement. Math Sci Eng C
29:2055-2062
92. Fu Q, Rahaman MN, Bal BS, Huang W, Day DE (2007) Preparation and bioactive
characteristics of a porous 13-93 glass, and fabrication into the articulating surface of a
proximal tibia. J Biomed Mater Res Part A 82:222-229
93. Fu Q, Rahaman MN, Bal BS, Brown RF, Day DE (2008) Mechanical and in vitro
performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication
technique. Acta Biomater 4:1854-1864
94. Fu Q, Rahaman MN, Bal BS, Brown RF (2010) Preparation and in vitro evaluation of
bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration
of load-bearing bones. J Biomed Mater Res A 93A:1380-1390
95. Liu X, Ramahan MN, Fu Q (2011) Oriented bioactive glass (13-93) scaffolds with
controllable
pore
size
by
unidirectional
freezing
of
camphene-based
suspensions:
microstructure and mechanical response. Acta Biomater 7:406-416
96. Brovarone
CV,
Verne
E,
Appendino
P
(2006)
Macroporous
bioactive
glass-ceramic
scaffolds for tissue engineering. J Mater Sci Mater Med 17:1069-1078
97. Deb S, Mandegaran R, Di Silvio L (2010) A porous scaffold for bone tissue engineering/
45S5 Bioglass derived porous scaffolds for co-culturing osteoblasts and endothelial cells.
J Mater Sci Mater Med 21:893-905
98. Bretcanu O, Samaille C, Boccaccini AR (2008) Simple methods to fabricate Bioglass -
derived glass-ceramic scaffolds exhibiting porosity gradient. J Mater Sci 43:4127-4134
99. Brown RF, Day DE, Day TE, Jung S, Rahaman MN et al (2008) Growth and differentiation
of osteoblastic cells on 13-93 bioactive glass fibers and scaffolds. Acta Biomater 4:387-396
100. Chen QZ, Rezwan K, Armitage D, Nazhat SN, Boccaccini AR (2006) The surface
functionalization of 45S5 Bioglass -based glass-ceramic scaffolds and its impact on
bioactivity. J. Mater Sci Mater Med 17:979-987
Search WWH ::




Custom Search