Biomedical Engineering Reference
In-Depth Information
effective functionality for the particles, which is a result of the competition between
entropic and internal energy contributions in the network formation.
Overall, then, it appears that colloidal suspensions are expected to exhibit phase
diagrams that are much more complex than those of molecular liquids. Forces between
colloids in solution have all sorts of forms that can be tuned (see Frenkel, 2002 )by
choosing an appropriate combination of solvent, solutes, additives etc. Experimental and
simulation approaches exhibit the same effects.
2.7
Conclusions
In this chapter a range of experimental tools has been introduced to study the structure
and rheological properties of physical polymer gels. The
also contains new and
powerful techniques based on numerical simulations, which bring very useful insights to
fundamental aspects of network formation, starting from molecular interaction potentials
well known in colloidal science. It is important to realize that the rich behaviours found in
experiments on polymer gels, and which we report in this topic, can be tuned with respect
to the range, strength, coordination etc. of effective interactions, both in numerical
simulations and, practically, with a large choice of available synthetic and biological
polymers and solvent compositions.
'
toolbox
'
References
Allen, M. P., Tildesley, D. J., 1989. Computer Simulation of Liquids. Oxford University Press,
New York.
Ansell, G. C., Dickinson, E., 1987. Faraday Discuss. 83 , 167 - 177.
Arnott, S., Fulmer, A., Scott, W. E. et al., 1974. J. Mol. Biol. 90 , 269 - 284.
Ayache, J., Beaunier, L., Boumendil, J., Ehret, G., Laub, D., 2010. Sample Preparation Handbook
for Transmission Electron Microscopy. Springer, New York.
Barnes, H. A., Nguyen, Q. D., 2001. J. Non-Newtonian Fluid Mech. 98 ,1 - 14.
Benedetti, E. L., Favard, P. (eds), 1973. Freeze Etching: Techniques and Applications. Société
Française de Microscopie Electronique, Paris.
Bijsterbosch, B. H., Bos, M. T. A., 1995. Faraday Discuss. 101 ,51 - 64.
Blandamer, M. J., Cullis, P. M., Engberts, J. B. F. N., 1998. J. Chem. Soc., Faraday Trans. 94 ,
2261 - 2267.
Bonneté, F., Vidal, O., Robert, M. C., Tardieu, A., 1996. J. Cryst. Growth 168 , 185 - 191.
Brown, M. E., 2001. Introduction to Thermal Analysis. Kluwer Academic Publishers, Dordrecht.
Bruylants, G., Bartik, K., 2005. Chim. Nouv. 23 ,9 - 14.
Burchard, W., 1983. Adv. Polym. Sci. 48 ,1 - 119.
Burchard, W., 1994. Light scattering techniques. In Ross-Murphy, S. B. (ed), Physical Techniques
for the Study of Food Biopolymers. Blackie Academic and Professional, Glasgow, pp. 151
-
213.
Clark, A. H., Ross-Murphy, S. B., 1987. Adv. Polym. Sci. 83 ,57
-
192.
Corrigan, A. M., Donald, A. M., 2009a. Eur. Phys. J. E 28 , 457
462.
Corrigan, A. M., Donald, A. M., 2009b. Langmuir 25 , 8599 - 8605.
Dasgupta, B. R., Weitz, D. A., 2005. Phys. Rev. E 71 , 0215041 - 9.
-
Search WWH ::




Custom Search