Biomedical Engineering Reference
In-Depth Information
54. K. Yamauchi, et al ., Preparation of collagen/calcium phosphate multilayer
sheet using enzymatic mineralization. Biomaterials , 25(24): p. 5481-9, 2004.
55. R. Filmon, et al ., Adherence of osteoblast-like cells on calcospherites developed
on a biomaterial combining poly(2-hydroxyethyl) methacrylate and alkaline
phosphatase. Bone , 30(1): p. 152-8, 2002.
56. R. Filmon, et al ., Poly(2-hydroxy ethyl methacrylate)-alkaline phosphatase:
A composite biomaterial allowing in vitro studies of bisphosphonates on the
mineralization process. J. Biomater. Sci. Polym. Ed. , 11(8): p. 849-68, 2000.
57. R. Filmon, et al ., In vitro study of the effect of bisphosphonates on mineral-
ization induced by a composite material: Poly 2(hydroxyethyl) methacrylate
coupled with alkaline phosphatase. Morphologie , 84(264): p. 23-33, 2000.
58. E.D. Spoerke, S.G. Anthony, and S.I. Stupp, Enzyme directed templating of
artifi cial bone mineral. Adv. Mater. , 21: p. 425-430, 2009.
59. M. Gungormus, et al ., Self assembled bi-functional peptide hydrogels with
biomineralization-directing peptides. Biomaterials , 31(28): p. 7266-74, 2010.
60. T.E. Douglas, et al ., Enzymatic mineralization of hydrogels for bone tissue
engineering by incorporation of alkaline phosphatase. Macromol. Biosci. , 12(8):
p. 1077-89, 2012.
61. W.M. Chirdon, W.J. O'Brien, and R.E. Robertson, Adsorption of catechol and
comparative solutes on hydroxyapatite. J. Biomed. Mater. Res. B Appl. Biomater. ,
66(2): p. 532-8, 2003.
62. J. Ryu, et al ., Mussel-inspired polydopamine coating as a universal route to
hydroxyapatite crystallization. Adv. Funct. Mater. , 20: p. 2132-2139, 2010.
63. H. Lee, et al ., Mussel-inspired surface chemistry for multifunctional coatings.
Science , 318(5849): p. 426-30, 2007.
64. J.T. Oliveira, et al ., Gellan gum: A new biomaterial for cartilage tissue engineer-
ing applications. J. Biomed. Mater. Res. A, 93(3): p. 852-63, 2010.
65. T. Douglas, et al ., Enzymatic mineralization of gellan gum hydrogel for bone
tissue-engineering applications and its enhancement by polydopamine.
J. Tissue Eng. Regen. Med. , 2012.
66. T.E.L. Douglas, et al ., Chitosan-based gels containing enzyme alkaline phos-
phatase. Patent application no. P6036192EP priority date 27.7.2011.
67. K. Thornton, et al ., Controlling stiffness in nanostructured hydrogels produced
by enzymatic dephosphorylation. Biochem. Soc. Trans. , 37(Pt 4): p. 660-4, 2009.
68. S.P. Bruder and A.I. Caplan, A monoclonal antibody against the surface of
osteoblasts recognizes alkaline phosphatase isoenzymes in bone, liver, kidney,
and intestine. Bone , 11(2): p. 133-9, 1990.
69. Y.H. Kang, et al ., Platelet-rich fi brin is a bioscaffold and reservoir of growth
factors for tissue regeneration. Tissue Eng. Part A , 17(3-4): p. 349-59, 2010.
70. H.N. Antoniades, Human platelet-derived growth factor (PDGF): purifi cation
of PDGF-I and PDGF-II and separation of their reduced subunits. Proc. Natl.
Acad. Sci. U.S.A. , 78(12): p. 7314-7, 1981.
71. E. Tischer, et al ., Vascular endothelial growth factor: a new member of the
platelet-derived growth factor gene family. Biochem. Biophys. Res. Commun. ,
165(3): p. 1198-206, 1989.
72. J. Pfeilschifter, L. Bonewald, and G.R. Mundy, Characterization of the latent
transforming growth factor beta complex in bone. J. Bone Miner. Res. , 5(1):
p. 49-58, 1990.
Search WWH ::




Custom Search