Biomedical Engineering Reference
In-Depth Information
89. P. Wang, et al ., Calcium sulfate hemihydrate powders with a controlled mor-
phology for use as bone cement. Journal of the American Ceramic Society , 91(6):
p. 2039-2042, 2008.
90. C. Grimsrud, et al ., The in vitro elution characteristics of antifungal-loaded
PMMA bone cement and calcium sulfate bone substitute. Orthopedics , 34(8):
p. 592, 2011.
91. J.C. Liao, et al ., Transpedicular grafting after short-segment pedicle instru-
mentation for thoracolumbar burst fracture: Calcium sulfate cement versus
autogenous iliac bone graft. Spine , 35(15): p. 1482-1488, 2010.
92. H.Y. Liu, et al ., Improvement on the performance of bone regeneration of cal-
cium sulfate hemihydrate by adding mineralized collagen. Tissue Engineering
Part A , 16(6): p. 2075-2084, 2010.
93. W. Walsh, et al ., Response of a calcium sulfate bone graft substitute in a
confi ned cancellous defect. Clinical Orthopaedics and Related Research , 406(1):
p. 228, 2003.
94. X.B. Yang, et al ., Biomimetic collagen scaffolds for human bone cell growth
and differentiation. Tissue Engineering , 10(7-8): p. 1148-1159, 2004.
95. T. Sakou, Bone morphogenetic proteins: From basic studies to clinical
approaches. Bone , 22(6): p. 591-603, 1998.
96. E. Groeneveld and E. Burger, Bone morphogenetic proteins in human bone
regeneration. European Journal of Endocrinology , 142(1): p. 9-21, 2000.
97. J.V.D. Dolder, et al ., Platelet-rich plasma: quantifi cation of growth factor lev-
els and the effect on growth and differentiation of rat bone marrow cells.
Tissue Engineering , 12(11): p. 3067-3073, 2006.
98. G. Weibrich, et al ., Growth factor levels in platelet-rich plasma and correla-
tions with donor age, sex, and platelet count. Journal of Cranio-Maxillofacial
Surgery , 30(2): p. 97-102, 2002.
99. H. Schliephake, Bone growth factors in maxillofacial skeletal reconstruction.
International Journal of Oral and Maxillofacial Surgery , 31(5): p. 469-484, 2002.
100. H. Schoenfeld, et al ., Cryopreservation of platelets at the end of their con-
ventional shelf life leads to severely impaired in vitro function. Cardiovascular
Journal of South Africa , 17(3): p. 125, 2006.
101. A.J. GarcĂ­a and C. Reyes, Bio-adhesive surfaces to promote osteoblast dif-
ferentiation and bone formation. Journal of Dental Research , 84(5): p. 407-413,
2005.
102. K.N. Malizos and L.K. Papatheodorou, The healing potential of the perios-
teum: Molecular aspects. Injury , 36(3): p. S13-S19, 2005.
103. E. Seeman, Periosteal bone formation-a neglected determinant of bone
strength. New England Journal of Medicine , 349(4): p. 320-323, 2003.
104.
X. Zhang, et al ., A perspective: Engineering periosteum for structural bone
graft healing. Clinical Orthopaedics and Related Research , 466(8): p. 1777-1787,
2008.
105.
S. Liao, et al ., Lumbar spinal fusion with a mineralized collagen matrix and
rhBMP-2 in a rabbit model. Spine , 28(17): p. 1954-1960, 2003.
106.
X.L. Xu, et al ., Evaluation of different scaffolds for BMP-2 genetic orthope-
dic tissue engineering. Journal of Biomedical Materials Research Part B: Applied
Biomaterials , 75(2): p. 289-303, 2005.
Search WWH ::




Custom Search