Biomedical Engineering Reference
In-Depth Information
33. A. Boskey and S. Marks, Mineral and matrix alterations in the bones of
incisors-absent ( ia/ia ) osteopetrotic rats. Calcifi ed Tissue International , 37(3):
p. 287-292, 1985.
34. E. Beniash, Biominerals—hierarchical nanocomposites: The example of bone.
Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology , 3(1):
p. 47-69, 2011.
35. S. Weiner, et al ., Rotated plywood structure of primary lamellar bone in the
rat: Orientations of the collagen fi bril arrays. Bone , 20(6): p. 509-514, 1997.
36. S. Weiner, T. Arad, and W. Traub, Crystal organization in rat bone lamellae.
FEBS Letters , 285(1): p. 49-54, 1991.
37. J. Smith, Collagen fi bre patterns in mammalian bone. Journal of Anatomy , 94(Pt 3):
p. 329, 1960.
38. J. Buckwalter, et al ., Bone biology. The Journal of Bone & Joint Surgery , 77(8):
p. 1276-1289, 1995.
39. X. Su, et al ., Organization of apatite crystals in human woven bone. Bone ,
32(2): p. 150-162, 2003.
40. X. Su, et al ., Microstructure and micromechanical properties of the mid-diaph-
yses of human fetal femurs. Connective Tissue Research , 36(3): p. 271-286, 1997.
41. J.W. Moreau, R.I. Webb, and J.F. Banfi eld, Ultrastructure, aggregation-state,
and crystal growth of biogenic nanocrystalline sphalerite and wurtzite.
American Mineralogist , 89(7): p. 950-960, 2004.
42. H.M. Kim, C. Rey, and M.J. Glimcher, Isolation of calcium
phosphate crys-
tals of bone by non-aqueous methods at low temperature. Journal of Bone and
Mineral Research , 10(10): p. 1589-1601, 2009.
43. W. Landis, et al ., Mineral and organic matrix interaction in normally calcify-
ing tendon visualized in three dimensions by high-voltage electron micro-
scopic tomography and graphic image reconstruction. Journal of Structural
Biology , 110(1): p. 39-54, 1993.
44. S. Weiner and P.A. Price, Disaggregation of bone into crystals. Calcifi ed Tissue
International , 39(6): p. 365-375, 1986.
45. M. Barinaga, Zebrafi sh: Swimming into the development mainstream.
Science , 250(4977): p. 34-35, 1990.
46. M.C. Fishman, Zebrafi sh-the Canonical Vertebrate. Science , 294(5545):
p. 1290-1291, 2001.
47. Y. Zhang, et al ., Mechanical properties of skeletal bone in gene-mutated
stöpsel dtl28d and wild-type zebrafi sh ( Danio rerio ) measured by atomic force
microscopy-based nanoindentation. Bone , 30(4): p. 541-546, 2002.
48. J. Ge, et al ., New evidence of surface mineralization of collagen fi brils in wild
type zebrafi sh skeleton by AFM and TEM. Materials Science and Engineering:
C , 27(1): p. 46-50, 2007.
49. X. Wang, et al ., Hierarchical structural comparisons of bones from wild-type
and liliput dtc232 gene-mutated zebrafi sh. Journal of Structural Biology , 145(3):
p. 236-245, 2004.
50. F.Z. Cui and X.M. Wang, Mechanical and structural properties of skel-
etal bone in wild-type and mutant zebrafi sh ( Danio rerio ), in Handbook of
Biomineralization , p. 381-396, 2007.
-
51.
P. Yang, et al ., Hierarchically ordered oxides. Science , 282(5397): p. 2244-2246,
1998.
Search WWH ::




Custom Search