Biomedical Engineering Reference
In-Depth Information
100. I. Bajpai, K. Balani and B. Basu, Spark plasma sintered HA-Fe 3 O 4 based mul-
tifunctional magnetic biocomposites, Journal of the American Ceramic Society ,
(in press, 2013).
101. M. Ajeesh, B.F. Francis, J. Annie, P.R.H. Varma, Nano iron oxide-hydroxy-
apatite composite ceramics with enhanced radiopacity, J. Mater. Sci.: Mater.
Med., 21:1427-1434, 2010.
102. D. Eniu, D. Cacaina, M. Coldea, M. Valeanu, S. Simon, Structural and mag-
netic properties of CaO
ceramics for hyperthermia,
Journal of Magnetism and Magnetic Materials, 293 310-313, 2005.
103. X.Y. Lu, N.Y. Zhang, L. Wei, J.W. Wei, Q.Y. Deng, X. Lu, K. Duan, J. Weng,
Fabrication of carbon nanotubes/hydroxyapatite nanocomposites via an in
situ process, Applied Surface Science, 2012:Article in press.
104. O. Bretcanu, E. Verne, M. Coisson, P. Tiberto, P. Allia, Magnetic properties of
the ferrimagnetic glass
P 2 O 5
SiO 2
Fe 2 O 3 glass
ceramics for hyperthermia, Journal of Magnetism and
Magnetic Materials, 305:529-533, 2006.
105. Y. Ebisawa, F. Miyaii, T. Kokubo, K. Ohura, T. Nakamura, Bioactivity of fer-
rimagnetic glassceramics in the system FeO
Fe 2 0 3
CaO
Si0 2 , Biomoterials,
18:1277-1284, 1997.
106. A.J. van der Borden, H.C. van der Mei, H.J. Busscher, Electric block current
induced detachment from surgical stainless steel and decreased viability of
Staphylococcus epidermidis, Biomaterials, 26:6731-6735, 2005.
107. A.J. van der Borden, H.C. van der Mei, H.J. Busscher, Electric
induced detachment of Staphylococcus epidermidis strains from surgi-
cal stainless steel, J. Biomed. Mater. Res. Part B: Appl. Biomater., 68B:160-164,
2004.
108. A.E. Clark, L.L. Hench, H.A. Paschall, The infl uence of surface chemistry on
implant interface histology: A theoretical basis for implant materials selec-
tion, J. Biomed. Mater. Res., 10:161-174, 1976.
109. A.J. van der Borden, H. van der Werf, H.C. van der Mei, H.J. Busscher, Electric
current
current
induced detachment of Staphylococcus epidermidis biofi lms from
surgical stainless steel, Applied and Environmental Microbiology, 70:6871-6874,
2004.
110. I. Bajpai, N. Saha, B. Basu, Moderate intensity static magnetic fi eld has bacte-
ricidal effect on E. coli and S. epidermidis on sintered hydroxyapatite, Journal
of Biomedical Materials Research Part B: Applied Biomaterials, 100B:1206-1217,
2012.
111. L. Strašák, V. Vetterl, J. Smarda, Effects of low
frequency magnetic fi elds on
bacteria Escherichia coli, Bioelectrochemistry, 55:161-164, 2002.
112. D.C. Ramon, J.T. Martin, M.R. Powell, Low
induced
growth modifi cation of Bacillus subtilis, Bioelectromagnetics, 8:275-282,
1987.
113. W. Ji, H. Huang, A. Deng, C. Pan, Effects of static magnetic fi elds on
Escherichia coli, Micron, 40:894-898, 2009.
114. K. Tsuchiya, K. Nakamura, K. Okuno, T. Ano, M. Shoda, Effect of homoge-
neous and inhomogeneous high magnetic fi elds on the growth of Escherichia
coli, Journal of Fermentation and Bioengineering, 81:343-346, 1996.
115. S. Nakasono, M. Ikehata, M. Dateki, S. Yoshie, T. Shigemitsu, T. Negishi,
Intermediate frequency magnetic fields do not have mutagenic, co
level, magnetic
fi eld
mutagenic
Search WWH ::




Custom Search