Biomedical Engineering Reference
In-Depth Information
83. N. Saha, A.K. Dubey, B. Basu, Cellular proliferation, cellular viability, and bio-
compatibility of HA
ZnO composites, J. Biomed. Mater. Res. Part B, 100B:256-264,
2011.
84. A. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide
nanoparticles for biomedical applications, Biomaterials, 26:3995-4021, 2005.
85. D1 Touati, Iron and oxidative stress in bacteria, Archives of Biochemistry and
Biophysics, 373:1-6, 2000.
86. R.A. Pareta, E. Taylor, T.J. Webster, Increased osteoblast density in the presence
of novel calcium phosphate coated magnetic nanoparticles, Nanotechnology,
19:265101-265106, 2008.
87. E.N. Taylor, T.J. Webster, The use of superparamagnetic nanoparticles for
prosthetic biofi lm prevention, International Journal of Nanomedicine, 4:145-152,
2009.
88. H. Sies, Oxidative stress: Oxidants and antioxidants, Experitmental Physiology,
82:291-295, 1997.
89. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller,
Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization,
physicochemical characterizations, and biological applications, Chem. Rev.,
108:2064-2110, 2008.
90. D. Arcos, R.P.D. Real, M. Vallet
Regi, A novel bioactive and magnetic bipha-
sic material, Biomaterials, 23 2151-2158, 2002.
91. A.K. Gupta and M. Gupta, Cytotoxicity suppression and cellular uptake
enhancement of surface modifi ed magnetic nanoparticles, Biomaterials, 26
1565-1573, 2005.
92. S. Dalai, S. Pakrashi, R.S.S. Kumar, N. Chandrasekaran, A. Mukherjee, A
comparative cytotoxicity study of TiO 2 nanoparticles under light and dark
conditions at low exposure concentrations, Toxicology Research, 1:116-130,
2012.
93. E. Andronescu, M. Ficai, G. Voicu, D. Ficai, M. Maganu, A. Ficai, Synthesis
and characterization of collagen/hydroxyapatite: Magnetite composite mate-
rial for bone cancer treatment, J. Mater. Sci.: Mater. Med., 21:2237-2242, 2010.
94.
T.
W. Wang, H.
C. Wu, W.
R. Wang, F.
H. Lin, P.
J. Lou, M.
J. Shieh,
Bioglass for
hyperthermia cancer therapy, J. Biomed. Mater. Res., 83A:828-837, 2007.
95. C. Wu, W. Fan, Y. Zhu, M. Gelinsky, J. Chang, G. Cuniberti, V. Albrecht,
T. Friis, Y. Xiao, Multifunctional magnetic mesoporous bioactive glass scaf-
folds with a hierarchical pore structure, Acta Materialia, 7:3563-3572, 2011.
T.
H. Young, The development of magnetic degradable DP
96.
H. Lin, The in vivo
performance of biomagnetic hydroxyapatite nanoparticles in cancer hyper-
thermia therapy, Biomaterials, 30:3956-3960, 2009.
97. G.D. Li, D.L. Zhou, Y. Lin, T.H. Pan, G.S. Chen, Q.D. Yin, Synthesis and char-
acterization of magnetic bioactive glass
C.
H. Hou, S.
M. Hou, Y.
S. Hsueh, J. Lin, H.
C. Wu, F.
ceramics containing Mg ferrite for
hyperthermia, Materials Science and Engineering C, 30:148-153, 2010.
98.
Y.
K. Lee, S.
Y. Choi, Crystallization and properties of Fe 2 O 3
CaO
SiO 2
glasses, J. Am. Ceram. Soc., 79:992-996, 1996.
99. N. Bock, A. Riminucci, C. Dionigi, A. Russo, A. Tampieri, E. Landi,
V.A. Goranov, M. Marcacci, V. Dediu, A novel route in bone tissue engineer-
ing: Magnetic biomimetic scaffolds, Acta Biomaterialia, 6:786-796, 2010.
Search WWH ::




Custom Search