Biomedical Engineering Reference
In-Depth Information
179. D.J. Mooney and A.G. Mikos, Growing new organs, Sci. Am., Vol. 280,
pp. 60-5, Apr 1999.
180. M.W. Laschke, Y. Harder, M. Amon, I. Martin, J. Farhadi, A. Ring,
N. Torio-Padron, R. Schramm, M. Rucker, D. Junker, J.M. Haufel, C. Carvalho,
M. Heberer, G. Germann, B. Vollmar, and M.D. Menger, Angiogenesis in
tissue engineering: breathing life into constructed tissue substitutes, Tissue
Eng., Vol. 12, pp. 2093-104, Aug 2006.
181. H.A. Zarem, B.W. Zweifach, and J.M. McGehee, Development of microcir-
culation in full thickness autogenous skin grafts in mice, Am. J. Physiol., Vol.
212, pp. 1081-5, May 1967.
182. M.W. Laschke, M. Rucker, G. Jensen, C. Carvalho, R. Mulhaupt, N.C. Gellrich,
and M.D. Menger, Improvement of vascularization of PLGA scaffolds by
inosculation of in situ-preformed functional blood vessels with the host
microvasculature, Ann. Surg., Vol. 248, pp. 939-48, Dec 2008.
183. E.C. Butcher, Leukocyte-endothelial cell recognition: Three (or more) steps to
specifi city and diversity, Cell, Vol. 67, pp. 1033-6, Dec 20 1991.
184. Z. Lokmic, F. Stillaert, W.A. Morrison, E.W. Thompson, and G.M. Mitchell,
An arteriovenous loop in a protected space generates a permanent, highly
vascular, tissue-engineered construct, FASEB J., Vol. 21, pp. 511-22, Feb 2007.
185. C.J. Kirkpatrick, R.E. Unger, V. Krump-Konvalinkova, K. Peters, H. Schmidt,
and G. Kamp, Experimental approaches to study vascularization in tissue
engineering and biomaterial applications, J. Mater. Sci. Mater. Med., Vol. 14,
pp. 677-81, Aug 2003.
186. K. Peters, H. Schmidt, R.E. Unger, M. Otto, G. Kamp, and C.J. Kirkpatrick,
Software-supported image quantifi cation of angiogenesis in an in vitro cul-
ture system: application to studies of biocompatibility, Biomaterials, Vol. 23,
pp. 3413-9, Aug 2002.
187. E. Pinney, K. Liu, B. Sheeman, and J. Mansbridge, Human three-dimensional
fi broblast cultures express angiogenic activity, J. Cell Physiol., Vol. 183, pp. 74-82,
Apr 2000.
188. A. Artel, H. Mehdizadeh, Y.C. Chiu, E.M. Brey, and A. Cinar, An agent-based
model for the investigation of neovascularization within porous scaffolds,
Tissue Eng. Part A, Vol. 17, pp. 2133-41, Sep 2011.
189. F. Bai, Z. Wang, J. Lu, J. Liu, G. Chen, R. Lv, J. Wang, K. Lin, J. Zhang, and
X. Huang, The correlation between the internal structure and vascularization
of controllable porous bioceramic materials in vivo: A quantitative study,
Tissue Eng. Part A, Vol. 16, pp. 3791-803, Dec 2010.
190. T.A. Petrie, J.R. Capadona, C.D. Reyes, and A.J. Garcia, Integrin specifi city
and enhanced cellular activities associated with surfaces presenting a recom-
binant fi bronectin fragment compared to RGD supports, Biomaterials, Vol. 27,
pp. 5459-70, Nov 2006.
191. R.K. Jain, Molecular regulation of vessel maturation, Nat. Med., Vol. 9,
pp. 685-93, Jun 2003.
192. N. Ferrara, H.P. Gerber, and J. LeCouter, The biology of VEGF and its recep-
tors, Nat. Med., Vol. 9, pp. 669-76, Jun 2003.
193. T. Kaully, K. Kaufman-Francis, A. Lesman, and S. Levenberg, Vascularization-
the conduit to viable engineered tissues, Tissue Eng. Part B Rev., Vol. 15,
pp. 159-69, Jun 2009.
Search WWH ::




Custom Search