Biomedical Engineering Reference
In-Depth Information
120. J. Xu, X. Zhou, H. Ge, H. Xu, J. He, Z. Hao, and X. Jiang, Endothelial cells
anchoring by functionalized yeast polypeptide, J. Biomed. Mater. Res. A,
Vol. 87, pp. 819-24, Dec 1 2008.
121. E.L. Rexeisen, W. Fan, T.O. Pangburn, R.R. Taribagil, F.S. Bates, T.P. Lodge,
M. Tsapatsis, and E. Kokkoli, Self-assembly of fi bronectin mimetic peptide-
amphiphile nanofi bers, Langmuir, Vol. 26, pp. 1953-9, Feb 2 2009.
122. H.H. Xu, M.D. Weir, and C.G. Simon, Injectable and strong nano-apatite scaf-
folds for cell/growth factor delivery and bone regeneration, Dent. Mater.,
Vol. 24, pp. 1212-22, Sep 2008.
123. Z.Y. Lin, Z.X. Duan, X.D. Guo, J.F. Li, H.W. Lu, Q.X. Zheng, D.P. Quan, and
S.H. Yang, Bone induction by biomimetic PLGA-(PEG-ASP)n copolymer
loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo,
J. Control. Release, Vol. 144, pp. 190-5, Jun 1 2010.
124. W.D. Chan, H. Perinpanayagam, H.A. Goldberg, G.K. Hunter, S.J. Dixon,
G.C. Santos, Jr., and A.S. Rizkalla, Tissue engineering scaffolds for the
regeneration of craniofacial bone, J. Can. Dent. Assoc., Vol. 75, pp. 373-7,
Jun 2009.
125. A.S. Sarvestani, X. He, and E. Jabbari, Effect of osteonectin-derived pep-
tide on the viscoelasticity of hydrogel/apatite nanocomposite scaffolds,
Biopolymers, Vol. 85, pp. 370-8, Mar 2007.
126. A.S. Sarvestani, X. He, and E. Jabbari, Osteonectin-derived peptide increases
the modulus of a bone-mimetic nanocomposite, Eur. Biophys. J., Vol. 37,
pp. 229-34, Feb 2008.
127. T.J. Webster, L.S. Schadler, R.W. Siegel, and R. Bizios, Mechanisms of
enhanced osteoblast adhesion on nanophase alumina involve vitronectin,
Tissue Eng., Vol. 7, pp. 291-301, Jun 2001.
128. W.P. Xu, W. Zhang, R. Asrican, H.J. Kim, D.L. Kaplan, and P.C. Yelick,
Accurately shaped tooth bud cell-derived mineralized tissue formation on
silk scaffolds, Tissue Eng. Part A, Vol. 14, pp. 549-57, Apr 2008.
129. R. Dimitriou and G.C. Babis, Biomaterial osseointegration enhancement with
biophysical stimulation, J. Musculoskelet. Neuronal. Interact., Vol. 7, pp. 253-65,
Jul-Sep 2007.
130. A.F. Mavrogenis, R. Dimitriou, J. Parvizi, and G.C. Babis, Biology of implant
osseointegration, J. Musculoskelet. Neuronal. Interact., Vol. 9, pp. 61-71,
Apr-Jun 2009.
131. U. Joos, H.P. Wiesmann, T. Szuwart, and U. Meyer, Mineralization at the inter-
face of implants, Int. J. Oral Maxillofac. Surg., Vol. 35, pp. 783-90, Sep 2006.
132. G. Kirmizidis and M.A. Birch, Microfabricated grooved substrates infl uence
cell-cell communication and osteoblast differentiation in vitro, Tissue Eng.
Part A, Vol. 15, pp. 1427-36, Jun 2009.
133. L. Le Guehennec, A. Soueidan, P. Layrolle, and Y. Amouriq, Surface treat-
ments of titanium dental implants for rapid osseointegration, Dent. Mater.,
Vol. 23, pp. 844-54, Jul 2007.
134. S. Makihira, Y. Mine, E. Kosaka, and H. Nikawa, Titanium surface roughness
accelerates RANKL-dependent differentiation in the osteoclast precursor cell
line, RAW264.7, Dent. Mater. J., Vol. 26, pp. 739-45, Sep 2007.
135. J.L. Ricci, J. Charvet, S.R. Frenkel, R. Chang, P. Nadkarni, J. Turner, and
H. Alexander, Bone engineering, in Bone Response to Laser Microtextured
Surfaces , J.E. Davies, Ed., Toronto, Canada: Em2 Inc., 2000.
Search WWH ::




Custom Search