Biomedical Engineering Reference
In-Depth Information
87. S. Otsuru, K. Tamai, T. Yamazaki, H. Yoshikawa, and Y. Kaneda, Circulating
bone marrow-derived osteoblast progenitor cells are recruited to the bone-
forming site by the CXCR4/stromal cell-derived factor-1 pathway, Stem Cells,
Vol. 26, pp. 223-34, Jan 2008.
88. S.W. Herring and P. Ochareon, Bone--special problems of the craniofacial
region, Orthod. Craniofac. Res., Vol. 8, pp. 174-82, Aug 2005.
89. W.L. Hylander and K.R. Johnson, In vivo bone strain patterns in the zygomatic
arch of macaques and the signifi cance of these patterns for functional inter-
pretations of craniofacial form, Am. J. Phys. Anthropol., Vol. 102, pp. 203-32,
Feb 1997.
90. J. Yuan, Y. Cao, and W. Liu, Biomimetic scaffolds: Implications for craniofa-
cial regeneration, J. Craniofac. Surg., Vol. 23, pp. 294-7, Jan 2012.
91. B.J. Costello, G. Shah, P. Kumta, and C.S. Sfeir, Regenerative medicine for
craniomaxillofacial surgery, Oral Maxillofac. Surg. Clin. North Am., Vol. 22,
pp. 33-42, Feb 2010.
92. J.J. Mao, W.V. Giannobile, J.A. Helms, S.J. Hollister, P.H. Krebsbach,
M.T. Longaker, and S. Shi, Craniofacial tissue engineering by stem cells,
J. Dent. Res., Vol. 85, pp. 966-79, Nov 2006.
93. S.H. Zaky and R. Cancedda, Engineering craniofacial structures: Facing the
challenge, J. Dent. Res., Vol. 88, pp. 1077-91, Dec 2009.
94. T. Dvir, B.P. Timko, D.S. Kohane, and R. Langer, Nanotechnological strat-
egies for engineering complex tissues, Nat. Nanotechnol., Vol. 6, pp. 13-22,
Jan 2010.
95. M.M. Stevens and J.H. George, Exploring and engineering the cell surface
interface, Science, Vol. 310, pp. 1135-8, Nov 18 2005.
96. J. Taipale and J. Keski-Oja, Growth factors in the extracellular matrix, FASEB
J., Vol. 11, pp. 51-9, Jan 1997.
97. S.A. Hacking, E. Harvey, P. Roughley, M. Tanzer, and J. Bobyn, The response
of mineralizing culture systems to microtextured and polished titanium sur-
faces, J. Orthop. Res., Vol. 26, pp. 1347-54, Oct 2008.
98. A. Curtis and C. Wilkinson, New depths in cell behaviour: Reactions of cells
to nanotopography, Biochem. Soc. Symp., Vol. 65, pp. 15-26, 1999.
99. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, and R. Bizios, Specifi c
proteins mediate enhanced osteoblast adhesion on nanophase ceramics,
J. Biomed. Mater. Res., Vol. 51, pp. 475-83, Sep 5 2000.
100. G. Colon, B.C. Ward, and T.J. Webster, Increased osteoblast and decreased
Staphylococcus epidermidis functions on nanophase ZnO and TiO2,
J. Biomed. Mater. Res. A, Vol. 78, pp. 595-604, Sep 1 2006.
101. L. Zhang and T.J. Webster, Nanotechnology and nanomaterials: Promises for
improved tissue regeneration, Nano Today, pp. 66-80, 2009.
102. N. Tran and T.J. Webster, Nanotechnology for bone materials, Wiley Interdiscip.
Rev. Nanomed. Nanobiotechnol., Vol. 1, pp. 336-51, May-Jun 2009.
103. C.J. Bettinger, R. Langer, and J.T. Borenstein, Engineering substrate topogra-
phy at the micro- and nanoscale to control cell function, Angew Chem. Int. Ed.
Engl., Vol. 48, pp. 5406-15, 2009.
104. A. Buxboim, I.L. Ivanovska, and D.E. Discher, Matrix elasticity, cytoskeletal
forces and physics of the nucleus: How deeply do cells 'feel' outside and in?,
J. Cell Sci., Vol. 123, pp. 297-308, Feb 1 2010.
Search WWH ::




Custom Search