Biomedical Engineering Reference
In-Depth Information
the mechanisms of polymer/nanomaterials with bone tissue remain
unknown. As for the technological development, the challenge is to design
and manufacture a biodegradable nanocomposite scaffold possessing a
tailored porosity and pore structure which is able to withstand in vivo load
and sustain its properties for a suffi ciently extended time.
Various scaffold production techniques for the processing of a vari-
ety of polymeric nanocomposite materials are currently employed. Each
presents some advantages over others along with its characteristic short-
coming, such as, the lack in control of scaffold porosity, pore size and dis-
tribution, and the presence of residual toxic solvent into the scaffold. The
problems of controlling accuracy and reproducibility for manufactured
scaffolds at an industrial scale and in a cost effective manner still remain
unresolved and have to be addressed in future R&D in this fi eld.
References
1. B.L. Seal, T.C. Otero, A. Panitch, Mater Sci Eng, Vol. 34, p. 147, 2001.
2. C. Laurencin, Y. Khan, S.F. El-Amin, Expert Rev Med Devices, Vol. 3, p. 49, 2006.
3. B. Hall, Bones and Cartilage: Developmental Skeletal Biology , San Diego,
Academic Press, 2005.
4. W.G. De Long, M. Mckee, W. Smith , R. Sanders, et al ., J. Bone Joint Surg. Am.,
Vol. 89A, p. 649, 2007.
5. C.V.M. Rodrigues, P. Serricella, A.B.R. Linhares, et al ., Biomaterials, Vol. 24,
p. 4987, 2003.
6. K. Seunarine, N. Gadegaard, M. Tormen, D.O. Meredith, M.O. Riehle,
C.D.W. Wilkinson, Nanomedicine, Vol. 1, p. 281, 2006.
7. K.F. Leong, C.K. Chua, K.F. Leong, et al ., Biomaterials, Vol. 24, p. 2363, 2003.
8. A.J. Salgado, O.P. Coutinho, R.L. Reis, Macromol. Biosci. , Vol. 4, p. 743, 2004.
9. B. Duan, M. Wang, W.Y. Zhou, W.L. Cheung, Z.Y. Li, W.W. Lu . Acta Biomater.,
Vol. 6, p. 4495, 2010.
10. K.H. Tan, C.K. Chua, K.F. Leong, et al ., Biomaterials , Vol. 24, p. 3115, 2003.
11. S.N. Parikh, Orthopedics, Vol. 25, p. 1301, 2002.
12. S.H. Teoh, Engineering Materials for Biomedical Applications, World Scientifi c,
Singapore, 2004.
13. (a) F. Khan, J. O. Smith, J. M. Kanzcler, R. S. Tare, R.O.C. Oreffo, M. Bradley,
Advan. Fun. Mater., 2012, DOI: 10.1002/adfm.201202710.
14. (b) F. Khan, S.R. Ahmad, Macromol. Biosci., 2012, DOI: 10.1002/mabi.201200409.
15. X. Liu, P.X. Ma, Ann. Biomedical Engineering , Vol. 32, p. 477, 2004.
16. L. Fang, L.Y. Leng, P. Gao, Biomaterials , Vol. 27, p. 3701, 2006.
17. M.E. Gomes, A.S. Ribeiro, P.B. Malafaya, et al ., Biomaterials, Vol. 22, p. 883,
2001.
18. S.C. Mendes, R.L. Reis, Y.P. Bovell, A.M. Cunha, C.A. van Blitterswijk,
J.D. de Bruijn, Biomaterials, Vol. 22, p. 2057, 2001.
19. L.M. Mathieu, T.L. Mueller, P.B. Bourban, et al ., Biomaterials , Vol. 27, p. 905,
2006.
Search WWH ::




Custom Search