Biomedical Engineering Reference
In-Depth Information
References
Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behav-
ior of rubber elastic materials. J Mech Phys Solids 41:389-412
Bischoff JE, Arruda EM, Grosh K (2000) Finite element modelling of human skin using a non-
linear elastic constitutive model. J Biomech 33:645-652
Bischoff JE, Arruda EM, Grosh K (2001) A new constitutive model for the compressibility of
elastomers at finite deformations. Rubber Chem Technol 74:541-559
Bischoff JE, Arruda EM, Grosh K (2002a) Finite element simulations of orthotropic hyperelastic-
ity. Finite Elem Anal Des 38:983-998
Bischoff JE, Arruda EM, Grosh K (2002b) A microstructurally based orthotropic hyperelastic con-
stitutive law. J Appl Mech 69:570-579
Bischoff JE, Arruda EM, Grosh K (2002c) Orthotropic hyperelasticity in terms of an arbitrary
molecular chain model. J Appl Mech 69:198-201
Bischoff JE, Arruda EM, Grosh K (2004) A rheological network model for the continuum
anisotropic and viscoelastic behavior of soft tissue. Biomech Model Mechanobiol 3:56-65
Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem
Technol 73:504-523
Boyce MC, Arruda EM (2001) Swelling and mechanical stretching of elastomeric materials. Math
Mech Solids 6:641-659
Butler DL, Guan Y, Kay MD, Cummings JF (1992) Location-dependent variations in the material
properties of the anterior cruciate ligament. J Biomech 25:511-518
Corr DT, Strarr MJ, Vanderby RJ, Best TM (2001) A nonlinear generalized maxwell fluid model
for viscoelastic materials. J Appl Mech 68:787-790
Danto MI, Woo SL-Y (1993) The mechanical properties of skeletally mature rabbit anterior cruci-
ate ligament and patellar tendon over a range of strain rates. J Orthop Res 11:58-67
Duenwald SE, Vanderby RJ, Lakes RS (2009) Viscoelastic relaxation and recovery of tendon. Ann
Biomed Eng 37:1131-1140
Duenwald SE, Vanderby RJ, Lakes RS (2010) Stress relaxation and recovery in tendon and liga-
ment: experiment and modeling. Biorheology 47:1-14
Fan H, Liu H, Wong EJW, Toh SL, Goh JCH (2008) In vivo study of anterior cruciate ligament
regeneration using mesenchymal stem cells and silk scaffold. Biomaterials 29:3324-3337
Fung YC (1972) Stress strain history relations of soft tissues in simple elongation. In: Fung YC,
Perrone N, Anliker M (eds) Biomechanics: its foundations and objectives. Prentice-Hall, Engle-
wood Cliffs
Goulet F, Rancourt D, Cloutier R, Tremblay P, Belzil AM, Lamontagne J, Bouchard M, Tremblay
J, Stevens L, Labrosse J, Langelier E, McKee MD (2004) Torn ACL: a new bioengineered
substitute brought from the laboratory to the knee joint. Appl Bionics Biomech 1:115-121
Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, Cummings JF, Simon TM (1993)
A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament re-
construction in the goat model. Am J Sports Med 21:176-185
Ma J, Narayanan H, Garikipati K, Grosh K, Arruda EM (2010) Experimental and computational
investigation of viscoelasticity of native and engineered ligament and tendon. In: Garikipati
K, Arruda EM (eds) Proceedings of the IUTAM symposium on cellular, molecular and tissue
mechanics. Springer, New York, pp 3-17
Ma J, Smietana MJ, Kostrominova TY, Wojtys EM, Larkin LM, Arruda EM (2012a) In vivo study
of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Tis-
sue Eng Part A 18:103-116
Ma J, Smietana MJ, Swinehart IT, Kostrominova TY, Wellik DM, Wojtys EM, Larkin LM, Arruda
EM (2012b) A comparison of tissue engineered scaffold-less bone-ligament-bone constructs
and patellar tendon autografts used for anterior cruciate ligament replacement in sheep (submit-
ted)
MacKintosh FC, Käs J, Janmey PA (1995) Elasticity of semiflexible biopolymer networks. Phys
Rev Lett 75:4425-4428
Search WWH ::




Custom Search