Biomedical Engineering Reference
In-Depth Information
appropriate clinical studies), the practising surgeons will benefit from preoperative
studies, predicting the distribution of infused therapeutic agents.
Acknowledgements The diffusion tensor MRI brain dataset was obtained by courtesy of G.
Kindlmann (Scientific Computing and Imaging Institute, University of Utah) and A. Alexander
(W.M. Keck Laboratory for Functional Brain Imaging and Behavior, University of Wisconsin-
Madison). Furthermore, proofreading by Dr. Nils Karajan is gratefully acknowledged.
References
Acartürk A (2009) Simulation of charged hydrated porous materials. Dissertation, Report No. II-18
of the Institute of Applied Mechanics (CE), Universität Stuttgart
Basser PJ, Mattielo J, Lebihan D (1994) Estimation of effective self-diffusion tensor from the NMR
spin-echo. J Magn Reson 103:247-254
Baxter LT, Jain RK (1989) Transport of fluid and macromolecules in tumors: I. Role of interstitial
pressure and convection. Microvasc Res 37:77-104
Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-
enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci 91:2076-2080
Bowen RM (1976) Theory of mixtures. In: Eringen AC (ed) Continuum physics, vol. III. Academic
Press, New York, pp 1-127
Chen X, Sarntinoranont M (2007) Biphasic finite element model of solute transport for direct
infusion into nervous tissue. Ann Biomed Eng 35:2145-2158
Dutta-Roy T, Wittek A, Miller K (2008) Biomechanical modelling of normal pressure hydro-
cephalus. J Biomech 41:2263-2271
Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J (eds)
Porous media: theory, experiments and numerical applications. Springer, Berlin, pp 3-86
Ehlers W (2009) Challenges of porous media models in geo- and biomechanical engineering in-
cluding electro-chemically active polymers and gels. Int J Adv Eng Sci Appl Math 1:1-24
Ehlers W, Karajan N, Markert B (2009) An extended biphasic model for charged hydrated tissues
with application to the intervertebral disc. Biomech Model Mechanobiol 8:233-251
Ellsiepen P (1999) Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser
Medien . Dissertation, Bericht Nr. II-3 aus dem Institut für Mechanik (Bauwesen), Universität
Stuttgart
Franceschini G, Bigoni D, Regitnig P, Holzapfel GA (2006) Brain tissue deforms similarly to filled
elastomers and follows consolidation theory. J Mech Phys Solids 54:2592-2620
Hakim S, Adams RD (1965) The special clinical problem of symptomatic hydrocephalus with nor-
mal cerebrospinal fluid pressure—observations on cerebrospinal fluid hydrodynamics. Neurol
Sci 2:307-327
Kaczmarek M, Subramaniam RP, Neff SR (1997) The hydromechanics of hydrocephalus: steady-
state solutions for cylindrical geometry. Bull Math Biol 59:295-323
Linninger AA, Somayaji MR, Mekarsk M, Zhang L (2008) Prediction of convection-enhanced
drug delivery to the human brain. J Theor Biol 250:125-138
Markert B (2007) A constitutive approach to 3-D nonlinear fluid flow through finite deformable
porous continua. Transp Porous Media 70:427-450
Nagashima T, Tamaki N, Matsumoto S, Horwitz B, Seguchi Y (1987) Biomechanics of hydro-
cephalus: a new theoretical model. Neurosurgery 21:898-903
Sarntinoranont M, Chen X, Zhao J, Mareci TM (2006) Computational model of interstitial trans-
port in the spinal cord using diffusion tensor imaging. Ann Biomed Eng 34:1304-1321
Smith JH, Humphrey JA (2007) Interstitial transport and transvascular fluid exchange during infu-
sion into brain and tumor tissue. Microvasc Res 73:58-73
Search WWH ::




Custom Search