Biomedical Engineering Reference
In-Depth Information
Menzel A, Waffenschmidt T (2009) A micro-sphere-based remodelling formulation for anisotropic
biological tissues. Philos Trans R Soc Lond A 367:3499-3523
Murtada S, Kroon M, Holzapfel GA (2010) A calcium-driven mechanochemical model for predic-
tion of force generation in smooth muscle. Biomech Model Mechanobiol 9:749-762
Nardinocchi P, Teresi L (2007) On the active response of soft living tissues. J Elast 88:27-39
Nash MP, Hunter PJ (2000) Computational mechanics of the heart. J Elast 61:113-141
Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant car-
diac arrhythmias. Prog Biophys Mol Biol 85:501-522
Nobile F, Quarteroni A, Ruiz-Baier R (2012) An active strain electromechanical model for cardiac
tissue. Int J Numer Methods Biomed Eng 28:52-71
Pathmanathan P, Whiteley JP (2009) A numerical method for cardiac mechanoelectric simulations.
Ann Biomed Eng 37:860-873
Pathmanathan P, Chapman SJ, Gavaghan D, Whiteley JP (2010) Cardiac electromechanics: the
effect of contraction model on the mathematical problem and accuracy of the numerical scheme.
Q J Mech Appl Math 63:375-399
Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher AG, Mirams GR,
Murray P, Osbourne JM, Walter A, Chapman SJ, Garny A, van Leeuwen IMM, Maini PK,
Rodriguez B, Waters SL, Whiteley JP, Byrne HM, Gavaghan D (2009) Chaste: a test-driven
approach to software development for biological modelling. Comput Phys Commun 180:2452-
2471. www.cs.ox.ac.uk/chaste
Rausch MK, Dam A, Göktepe S, Abilez OJ, Kuhl E (2011) Computational modeling of growth:
systemic and pulmonary hypertension in the heart. Biomech Model Mechanobiol 10:799-811
Reumann M, Fitch BG, Rayshubskiy A, Keller D, Seemann G, Dossel O, Pitman MC, Rice JJ
(2009) Strong scaling and speedup to 16,384 processors in cardiac electro-mechanical simula-
tions. Proc IEEE 09:2795-2798
Rice JJ, Wang F, Bers DM, de Tombe PP (2008) Approximate model of cooperative activation and
crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J 95:2368-
2390
Rogers JM, McCulloch AD (1994) A collocation-Galerkin finite element model of cardiac action
potential propagation. IEEE Trans Biomed Eng 41:743-757
Rossi S, Ruiz-Baier R, Pavarino LF, Quarteroni A (2011) Active strain and activation models in
cardiac electromechanics. In Brenn G, Holzapfel GA, Schanz M, Steinbach O (eds) Proc Appl
Math Mech, vol 11, pp 119-120
Rossi S, Ruiz-Baier R, Pavarino LF, Quarteroni A (2012) Orthotropic active strain models for the
numerical simulation of cardiac biomechanics. Int J Numer Methods Biomed Eng 28:761-788
Rudy Y, Silva JR (2006) Computational biology in the study of cardiac ion channels and cell
electrophysiology. Q Rev Biophys 39:57-116
Sermesant M (2003) Modèle électromécanique du coeur pour l'analyse d'image et la simulation.
PhD Thesis, Université de Nice Sophia Antipolis, France
Smerup M, Nielsen E, Agger P, Frandsen J, Vestergaard-Poulsen P, Andersen J, Nyengaard J,
Pedersen M, Ringgaard S, Hjortdal V, Lunkenheimer PP, Anderson RH (2009) The three-
dimensional arrangement of the myocytes aggregated together within the mammalian ventricu-
lar myocardium. Anat Rec 292:1-11
Smith NP, Nickerson DP, Crampin EJ, Hunter PJ (2004) Multiscale computational modelling of
the heart. Acta Numer 13:371-431
Taber LA, Perucchio R (2000) Modeling heart development. J Elast 61:165-197
ten Tusscher KH, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue.
Am J Physiol, Heart Circ Physiol 286:H1573-H1589
Tung L (1978) A bi-domain model for describing ischemic myocardial D-C potentials. PhD Thesis,
MIT, Cambridge, MA
Usyk TP, Mazhari R, McCulloch AD (2000) Effect of laminar orthotropic myofiber architecture
on regional stress and strain in the canine left ventricle. J Elast 61:143-164
Search WWH ::




Custom Search