Biomedical Engineering Reference
In-Depth Information
Acknowledgements The support by the European Research Council through the grant 'Math-
card, Mathematical Modelling and Simulation of the Cardiovascular System', ERC-2008-AdG
227058 is gratefully acknowledged.
References
Ambrosi D, Pezzuto S (2012) Active strain vs. active stress in mechanobiology: constitutive issues.
J Elast 107:121-199
Ambrosi D, Arioli G, Nobile F, Quarteroni A (2011) Electromechanical coupling in cardiac dy-
namics: the active strain approach. SIAM J Appl Math 71:605-621
Ashikaga H, Coppola BA, Yamazaki KG, Villarreal FJ, Omens JH, Covell JW (2008) Changes in
regional myocardial volume during the cardiac cycle: implications for transmural blood flow
and cardiac structure. Am J Physiol, Heart Circ Physiol 295:H610-H618
Bueno-Orovio A, Cherry EM, Fenton FH (2008) Minimal model for human ventricular action
potential in tissue. J Theor Biol 253:544-560
CellML (2000) (Language for storing and exchange of computer-based mathematical models).
www.cellml.org
Chapelle D, Fernandez MA, Gerbeau JF, Moireau P, Sainte-Marie J, Zemzemi N (2009) Numerical
simulation of the electromechanical activity of the heart. Lect Notes Comput Sci 5528:357-365
Cherubini C, Filippi S, Nardinocchi P, Teresi L (2008) An electromechanical model of cardiac
tissue: constitutive issues and electrophysiological effects. Prog Biophys Mol Biol 97:562-573
Colli Franzone P, Pavarino LF (2004) A parallel solver for reaction-diffusion systems in computa-
tional electro-cardiology. Math Models Methods Appl Sci 14:883-911
Continuity (2005) (A problem-solving environment for multi-scale modeling in bioengineering
and physiology). www.continuity.ucsd.edu/Continuity
Costa KD, Holmes JW, McCulloch AD (2001) Modelling cardiac mechanical properties in three
dimensions. Philos Trans R Soc Lond A 359:1233-1250
Evangelista A, Nardinocchi P, Puddu PE, Teresi L, Torromeo C, Varano V (2011) Torsion of the
human left ventricle: Experimental analysis and computational modelling. Prog Biophys Mol
Biol 107:112-121
Göktepe S, Kuhl E (2010) Electromechanics of the heart: a unified approach to the strongly coupled
excitation-contraction problem. Comput Mech 45:227-243
Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application
to conductance and excitation in nerve. J Physiol 117:500-544
Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally
based framework for material characterization. Philos Trans R Soc Lond A 367:3445-3475
Iribe G, Helmes M, Kohl P (2007) Force-length relations in isolated intact cardiomyocytes sub-
jected to dynamic changes in mechanical load. Am J Physiol, Heart Circ Physiol 292:H1487-
H1497
Iyer V, Mazhari R, Winslow RL (2004) A computational model of the human left ventricular
epicardial myocyte. Biophys J 87:1507-1525
Kerckhoffs RCP, Healy SN, Usyk TP, McCulloch AD (2006) Computational methods for cardiac
electromechanics. Proc IEEE 94:769-783
Lafortune P, Arís R, Vázquez M, Houzeaux G (2012) Coupled parallel electromechanical model
of the heart. Int J Numer Methods Biomed Eng 28:72-86
Land S, Niederer SA, Smith NP (2012) Efficient computational methods for strongly coupled
cardiac electromechanics. IEEE Trans Biomed Eng 59:1219-1228
Lee EH, Liu DT (1967) Finite strain elastic-plastic theory with application to plane-wave analysis.
J Appl Phys 38:17-27
LifeV (2001) (A parallel finite element library). www.lifev.org
Luo C, Rudy Y (1991) A model of the ventricular cardiac action potential: depolarization, repolar-
ization, and their interaction. Circ Res 68:1501-1526
Search WWH ::




Custom Search